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Abstract— Tendon-driven continuum robots (TDCRs), with
their flexible backbones, offer the advantage of being used
for navigating complex, cluttered environments. However, to
do so, they typically require multiple segments, often leading
to complex actuation and control challenges. To this end, we
propose a novel approach to navigate cluttered spaces effectively
for a single-segment long TDCR which is the simplest topology
from a mechanical point of view. Our key insight is that
by leveraging contact with the environment we can achieve
multiple curvatures without mechanical alterations to the robot.
Specifically, we propose a search-based motion planner for a
single-segment TDCR. This planner, guided by a specially de-
signed heuristic, discretizes the configuration space and employs
a best-first search. The heuristic, crucial for efficient navigation,
provides an effective cost-to-go estimation while respecting
the kinematic constraints of the TDCR and environmental
interactions. We empirically demonstrate the efficiency of our
planner—testing over 525 queries in environments with both
convex and non-convex obstacles, our planner is demonstrated
to have a success rate of about 80% while baselines were not
able to obtain a success rate higher than 30%. The difference is
attributed to our novel heuristic which is shown to significantly
reduce the required search space.
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purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
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I. INTRODUCTION

Tendon-driven continuum robots (TDCRs), bend their flex-
ible backbones via tendon actuation, making them popular
for medical and industrial applications for accessing areas
with constricted entry-points. As navigating cluttered areas
requires more intricate shapes, several segments are typically
used, as each segment is capable of bending only in a
C-shape. A multi-segment design comes at the price of
complex actuation unit design [1] and tendon control. While
methods like variable tendon routing [2], layer jamming [3],
and locking mechanisms [4] vary curvatures, they demand
mechanical modifications to the robot design. In this work
we argue that in cluttered environments, we can use a simple
single-segment long TDCR that exploits contacts with the
environment (contact-aided navigation (CAN)) to achieve
variations in curvature.

TDCRs can be used to deviate from the common obstacle-
avoidance paradigm, as they can interact with the envi-
ronment due to their compliance. For example, they have
been exploited for environmental sensing by actively tapping
the surroundings [5]. They can be used for CAN as the
environmental interactions deform the robot due to resulting
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Fig. 1: (a) Problem statement: the end-effector of a TDCR must reach a
given target pose in a cluttered environment, (b) Single-segment TCDR’s
unsuccessful solution (without CAN) which intersects an obstacle, (c)
Three-segment TDCR’s successful solution, (d) Single-segment’s successful
solution (with CAN) obtained by leveraging the obstacles to vary its
curvature and reach the target pose.

external constraints on the robot shape, providing passive
degrees of freedom (DOF) that can be leveraged to improve
the workspace that the robot can access [6]. However, in
scenarios cluttered with obstacles where the robot’s end-
effector must reach a target pose in order to carry out various
tasks, a vital component is a motion planner capable of
making combinatorial decisions about the necessary contacts
to reach the desired pose. This motion planner, which is
the focus of this paper, is responsible for identifying the
sequence of actuation inputs required to navigate the robot.

Consider an environment with obstacles, where the robot
needs to reach a target pose (see Fig. 1(a)). A single-
segment robot has limited workspace and cannot achieve the
illustrated target pose, while avoiding contact with obstacles
(Fig. 1(b)). To reach the target pose with obstacle avoidance,
a multi segment robot is potentially required (Fig. 1(c)). A
single segment long TDCR is essentially under-actuated for
the task at hand as it only has two actuated DOFs (from
bending and length insertion). However, CAN allows it to
potentially leverage contacts with the obstacles to vary its
curvature and reach the target pose, as shown in Fig. 1(d).

A. Related Work

Soft growing vine robots, despite being underactuated,
leverage their follow-the-leader (FTL) deployment capability
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for CAN. However, the robot path is modeled as a series
of line segments [7], [8] to simplify trajectory generation
between obstacles, and does not reflect the TDCR’s contin-
uous backbone. Selvaggio et al. [6] use inverse kinematics
to actively steering vine robots, but only look at point-sized
obstacles.

CAN has been exploited for hyperredundant robots where
they have the advantage of additional DOFs that can be used
to steer the end-effector towards the target pose.

Sampling-based approaches like Rapidly-exploring Ran-
dom Trees [9] can perform poorly when required to traverse
through narrow passages present between obstacles [10].

Search-based planning in the configuration space has been
proposed to reach a target position [11], a target pose [10]
and to find stable load configurations [12] for these multi-link
robots. While search-based planning offers a more systematic
approach to exploring the workspace, the proposed heuristics
in the above works are tailored for multi-link robots, which
offer increased maneuverability (due to higher DOF) for
controlling the end-effector’s pose.

Therefore, CAN for a single segment TDCR necessitates
methods that respect the robot kinematics and the fact that it
is underactuated. Existing controllers account for possible
contacts [13], [14], but require user-defined trajectories.
Given a trajectory, inverse-kinematics models respecting
contact mechanics [15] could be used to follow the trajectory
as well.

Naughton et al. [16] use reinforcement learning to develop
the motion plan for a two-segment soft robot for position
control amidst obstacles, although their work does not extend
to achieving a target pose.

B. Contributions
In this letter, we propose a search-based motion planner for

a planar single-segment TDCR to reach a target position and
orientation. Our search-based planner discretizes the configu-
ration space, and performs a best-first search while exploiting
contacts with the environment. Key to the efficiency of our
planner is a novel efficient-to-compute heuristic function. It
captures the kinematics of the single segment TDCR and
guides the planner to the goal, while exploring only a fraction
of the entire search space.

II. PROBLEM DEFINITION

We consider a planar single-segment TDCR and denote
its 2D workspace as W ∈ R2, consisting of o known
obstacles Wobs = {O1, . . .Oo}. The boundary of the jth

obstacle is defined by a closed curve fj(x) = 0 with points
lying outside the obstacle satisfying fj(x) > 0.

Our robot is actuated via (i) inserting and retracting the
base of the robot and (ii) pulling and releasing a single
tendon.1

1The bending in a TDCR is underactuated, where even though there
are two antagonistic tendons, and thus two inputs, the robot only has one
degree of freedom in bending from tendon actuation. For simplification,
we consider the length of one tendon, ℓ1ten as the actuation input. Once
the corresponding robot configuration is calculated, the value of the second
tendon, ℓ,2ten can be determined using geometry. We remove the superscript
of the first tendon for convenience.

To this end, a joint-space value, q = (ℓseg, ℓten) describes
the total length of the robot that has been inserted into the
workspace and the tendon length, respectively. We denote
the joint-space, namely the space of all joint-space values,
as Q. A joint-space action δ = (δseg, δten) describes the
amount δseg that the base is inserted or retracted (corre-
sponding to positive and negative values of δseg, respectively)
and the amount δten that the tendon is releasaed or pulled
(corresponding to positive and negative values of δten, re-
spectively). Applying a joint-space action δ = (δseg, δten)
on a robot with the joint-space value q = (ℓseg, ℓten) is
denoted by q + δ and yields the new joint-space value
(ℓseg+δseg, ℓten+δten). We will use σ to denote a sequence
of joint-space actions and Σ to denote all such possible
sequences.

Applying a joint-space action on a joint-space value is not
always guaranteed to result in a feasible solution as the model
might return a solution that does not satisfy the problem
constraints. We refer to such actions as invalid actions, and
all actions leading to feasible solutions as valid actions.
Finally, we denote by p(q+ σ) and ψ(q+ σ) the position
and orientation of the robot’s end-effector w.r.t. to the global
frame of reference after applying σ to q.

Now, the motion planning problem can be stated as
follows.

Problem 1: Given a single-segment TDCR with known
shape known for an initial joint-space value qinit ∈ Q,
moving amidst a set O = {O1, . . .Oo} of known obstacles,
a tip goal pose, Tgoal containing the goal position and
orientation pgoal, ψgoal, a position and orientation tolerance
ε, ω, our motion-planning problem calls for computing a
sequence of valid joint space actions σ = {δ1, . . . , δk} such
that

||p(qinit + σ)− pgoal||2 ≤ ε, (1)
|ψ(qinit + σ)− ψgoal| ≤ ω. (2)

Namely, that the robot’s tip reaches the goal pose within the
goal tolerance as shown in Fig. 2(a). And that each joint-
space action δi is a valid action when applied to qinit+δ1+
. . . δi−1.

III. KINEMATIC MODEL FOR OBSTACLE INTERACTION

In this section we describe our kinematic model for a
planar single-segment TDCR. Our approach adapts the model
introduced by Ashwin et al. [17].2 However, to reduce
computational complexity, instead of employing the pro-
posed four-bar mechanism, we use the so-called piece-wise
constant-curvature assumption (PCCA). PCCA discretizes
the robot into a series of m mutually-tangent constant-
curvature arcs, each of curvature κi,∀i = 1, 2 . . .m as shown
in Fig. 2(b). These individual curvatures are collectively
represented by the vector κ. The configuration-space value
is represented by c(q) = (ℓseg, κ), and can be used to
reconstruct the robot shape. As we will see, the kinematic

2This model assumes there is no friction in the system and that the tendons
are partially constrained [18].
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Fig. 2: (a) Robot shape at qinit and at qinit + σ with respective end-
effector positions. (b) Workspace W with obstacles indicated in blue. The
backbone is represented by a sequence of constant-curvature arcs subtending
an angle θi with curvatures κi, where i = 1, . . . ,m. The tendons are
indicated in violet.

model is treated as an energy-minimization problem, where
the equilibrium configurations must (i) satisfy input tendon
length constraints and (ii) remain outside the obstacles.
In this section we first describe the optimization based
kinematic model, and then use it to describe the required
backbone parameters.

A. Optimization-based kinematic model

The objective of the kinematic model is to determine
the values of κ for a given joint-space value q, while
ensuring that the robot lies outside the obstacles. Since
we consider only one tendon as the actuation input, the
first nonlinear equality constraint enforces that the actuated
tendon length, ℓten should be equal to the calculated tendon
length ℓ∗ten. Calculating these tendon lengths for a configu-
ration c is described in Sec. III-B.

g(c(q)) = ℓ∗ten − ℓten. (3)

Recall that the boundary of an obstacle j is defined by
the function fj(x). Let angle ψfj (x) be the angle made by
the tangent to this obstacle at x. Since we want the robot to
lie outside these obstacles, we can formulate the nonlinear
constraint as

fj(X(c(q))) ≥ 0, (4)

where X(c(q)) represents a set of points approximating
the robot’s geometry. The selection of these points is de-
tailed in Sec. III-B. Assuming the material is isotropic,
minimizing the strain energy at equilibrium configurations
is equivalent to minimizing the individual curvatures of the
subsegments [17]. The resulting optimisation problem, using
Eq. (3) and (4), is given by

min
κ

n∑
i=1

(κi)
2

s.t. g(c(q)) = 0

fj(X(c(q))) ≥ 0,∀j = 1, 2 . . . o. (5)
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Fig. 3: (a) Robot’s initial configuration at q. (b), (c) Overlayed robot shapes
for joint sequences (b) σ (two length-extensions, and three bending actions)
and (c) σ′ (reverse order: three bending actions, and two length-extensions).

B. Robot kinematic representation

Recall that we discretize the backbone into a series
of m circular arcs, also called subsegments3. For a robot
of length ℓseg, each sub-segment has a length of ℓseg/m
and curvature of κi. Thus, the subtending angle of the i’th
sub-segment is θi = κi · ℓseg/m. The vector κ contains the
curvatures of all these subsegments.

The tip of each subsegment is denoted by pi. If we
define a local frame of reference attached to pi with its z-
axis tangent to the backbone, then the transformation matrix
Ti
i−1 ∈ SE(2) is used to calculate the relative pose between

two such consecutive frames. We consider the two tendons
placed at a distance of rd from the backbone and denote their
position vectors at the i’th sub-segment as p1

i,ten and p2
i,ten

respectively.4 Eq. (3) requires calculating the length of the
first tendon which is given by

ℓten(c(q)) =

m∑
i=1

||p1
i,ten − p1

i−1,ten||2. (6)

To define the nonlinear constraints in Eq. (4), we need
to approximate the robot shape by a set of discrete points.
In our setting, we will use a set of backbone and tendon
positions. Specifically for a given c(q), we define the set
X(q, κ) of 3m points as

X(c(q)) =

{[
pi p1

i,ten p2
i,ten

]
,∀i = 1, . . . ,m

}
. (7)

C. Applying a sequence of joint space actions

In the absence of obstacles, there is a one-to-one mapping
between a sequence of joint-space actions applied to the
robot starting at some initial joint-space value and the final
shape of the robot. However, contacts between the robot and
the obstacles affect its shape. This implies that given an
initial joint-space value q = (ℓseg, ℓten) and two different
joint-space sequences σ, σ′ such that q + σ = q + σ′,
may result in different robot shapes due to different contact
histories. An example is illustrated in Fig. 3. Therefore, there
can be multiple solutions for Eq. (5).

3Such discretization is natural as typically, a TCDR is built using a series
of m disks used to route the tendons.

4See [18] for the exact formulae.



To solve Problem 1, we begin with the initial joint-
space value qinit, with known (ℓinit, κinit). To compute
the resulting shape after applying action δ1 to qinit, we
use κinit to warm-start the optimization in Eq. (5). The
obtained curvature values can be used to calculate the end-
effector position and orientation, and then used to solve
for (qinit + δ1 + δ2). The model therefore, needs to be
solved k times to obtain the κ for (qinit + δ1 + δ2 . . .+ δk).
Subsequently, the end-effector’s position and orientation are
determined.

IV. METHOD

To address our motion-planning problem, we take a
search-based planning approach [19], [20] where we run a
best-first search on a discretized approximation of the con-
tinuous joint-space. This section details our implementation
of the necessary primitive operations, data structures, and the
proposed heuristic for this search.

A. Node representation

Each node n in our search algorithm corresponds to a
sequence of joint-space actions σ(n) = {δ1, . . . , δk} and
each edge corresponds to one such joint-space action δi. Each
node is uniquely represented by pair (qn, κn) where qn =
qinit+δ1+ . . .+δk is a joint-space vector and κn is a vector
corresponding the individual curvatures of the robot’s sub-
segments. The curvatures κn resulting from applying σ(n)
to qinit can be obtained by solving the forward kinematics
model defined in Eq. (5). The curvatures along with the
segment length from the joint space vector can be used to
reconstruct the shape of the robot using Eq. (7).

B. Node extension

Our joint-space actions, A := (0, δℓten), (δℓseg, δℓten),
involve either adjusting the robot’s tendon by δℓten or
inserting its base by δℓseg while simultaneously adjusting
the tendon by δℓten. For a node n = (qn, κn) and a joint-
space action δ ∈ A, we define the operation of extending n
by δ as creating a node n′ = (qn

′
= qn + δ, κn

′
), where

κn
′

is computed using the optimization in Eq. (5) with κn

as the initial guess. We say that this extension is valid if δ
is a valid joint-space action when applied to qn.

C. Duplicate detection

To avoid expanding similar, yet non-identical states, exist-
ing search-based approaches over continuous search spaces
(as is our setting) group states into equivalence classes [21].
This is analogous to how standard search algorithms (over
finite discrete graphs) reduce search effort by identifying
previously-visited states, a process known as duplicate de-
tection [22]. In our case, two nodes n = (qn, κn) and n′ =
(qn

′
, κn

′
) are considered duplicates if (i) qn = qn

′
and

(ii) ||p (σ(n))−p (σ(n′)) ||2 ≤ dsim, where dsim > 0 is some
threshold parameter. That is, condition (ii) uses the distance
between the two tip positions in order to detect duplicates.

D. Heuristic estimate of nodes

In heuristic-based search, heuristics are used to speed up
the search by estimating the cost to reach the goal. In our
case this means estimating the length of a path that will
allow the end-effector of the TDCR to reach a target pose.
In this letter, we propose a heuristic that considers the robot’s
limited steering properties around the known obstacles while
avoiding the need to run the more computationally-complex
forward kinematic model.

To achieve this, we suggest a simplified contact model for
heuristic computation, which will employ constant-curvature
(CC) arcs. Such arcs have been widely used to model load-
free configurations [23]. Specifically, here we model the
robot’s motion via a sequence of paths having a constant
curvature. The robot can only change its curvature along the
backbone when in contact with an obstacle. Specifically, we
assume that the shape, and consequently the end-effector’s
trajectory to the goal is a series of mutually tangent CC
arcs, with each arc beginning and ending on the surface of
an obstacle to reflect the approximated contact mechanics.
Therefore, in the absence of any contacts this trajectory
would be a single CC arc. While CC curves do not accurately
reflect the robot shape as there is curvature variation due to
contact forces, our work posits that they could be used to
provide a sufficient estimate for the cost-to-go as they reflect
the TDCR’s limited steering capabilities.

Therefore, our heuristic h(n) : SE(2)→ R takes as input
the position and orientation of the robot’s end-effector at a
given node n and estimates the length of the path to reach the
goal. To avoid calculating h(n) for every prospective node,
we precompute h(n) by performing a backward search from
the goal. We discretize SE(2) into cells, where each cell
stores the length of the shortest path consisting of CC arcs
from the goal to it. Using the precomputed values associated
with each grid cell, the heuristic value for each node can be
calculated during the search, as detailed in IV-D.4.

1) Overview: In order to precompute the cost of paths of
CC arcs from each cell to the goal, we perform a backward
search from the goal. We first find the set of all CC arcs
whose end point orientation corresponds to the goal pose
(Fig. 4(a)). From this set, we identify cells that could be
potential contact points (Fig. 4(b)). From these contact cells,
we perform the same search as before for CC arcs, but use the
pose of these contact cells to populate consequent CC arcs
(Fig. 4(c)). The process is repeated for all possible contact
cells. Finally, we have a set of CC arcs from each cells that
can reach the goal (Fig. 4(d)).

There are two main components to precomputing
the heuristic: (1) PopulateCCArcs(pose): Determin-
ing the set of all cells that can reach a given tar-
get pose with a valid CC arc (to be defined shortly),
(2) IdenitfyContact(cell): Identifies whether an in-
put cell is a possible contact cell. This function is evaluated
for each cell found in the above set. For the case where there
are no obstacles, the heuristic computation only involves
running step (1) with the goal pose as input.
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Fig. 4: Diagrammatic representation of the heuristic calculation. (a) PopulateCCArcs
(
pgoal, ψgoal

)
evaluates cell poses that contain CC arcs (red)

to reach a goal pose. Note that from each cell pose, only one arc reaches the goal. (b) Having obstacles (blue) invalidates some of the CC arcs. Running
IdenitfyContact(cell) for each cell pose identified in the previous step identifies contact cells (green circles). (c) Using one of the contact cells,
cell c, PopulateCCArcs(pc, ψc) is run, identifying new CC arcs that reach its pose (green) (d) After the above steps, we can see (i) positions from
which arcs with several orientations were computed (e.g., cell b and cell a) and (ii) For the illustrated robot, the proposed heuristic informs the planner
that based on its current end-effector orientation it can reach the goal via the CC arc connecting cell a and c, and consequently c to the goal.

2) Implementation: As mentioned, our heuristic will rely
on a discretization of SE(2) into cells. Let this grid be
denoted by C, with each cell c ∈ C of size ∆ × ∆ × α
where ∆ ∈ R and α = 2π/s for some s ∈ N+. Thus,
we introduce mappings between cells and the pose they
represent. Specifically, let CELL be a mapping taking a pose
(p, ψ) ∈ SE(2) and returning the cell containing this pose.
Similarly, let POSITION, ORIENTATION and POSE be
mappings taking a cell c ∈ C and returning the position,
orientation and pose at the center of c, respectively. The
heuristic value of every cell is initially set to ∞.
(1)—PopulateCCArcs(pose): For any target pose
(p, ψ) ∈ SE(2), there’s a unique CC arc starting from u ∈
R2 and reaching this target pose. Let a = CC-ARC(p,ψ)(u)
be this arc. Its curvature, and length are denoted by κ(a)
and ℓ(a), respectively. Similarly, its orientation at u w.r.t. the
global x-axis is denoted by ψ(a). We say that such an arc
is valid for some curvature bound κmax if (i) κ(a) < κmax,
(ii) θ(a) < θmax, and (iii) a does not intersect any obstacle.

Given a position u ∈ R2, let Cu be the set of all cells that
have the same position, but different orientations. Namely,

Cu := {c | ∃ψ ∈ SO(2) s.t. CELL(u, ψ) = c}.

Following the discussion above, given some target
pose (p, ψ), if we compute a valid arc a, only one cell ca
in Cq contains this arc’s orientation ψ(a), i.e. ca =
CELL(u, ψ(a)). We set the heuristic value ha of ca to be the
arc’s length, i.e. ha := ℓ(a). We use a breadth-first search
(outlined in Alg. 1) to identify the set, S(p,ψ), of all cells with
valid arcs reaching (p, ψ). This entire process is equivalent to
identifying the workspace of a single CC segment as shown
in Fig. 4(a).
(2)—IdenitfyContact(cell):

We say that a cell c′ ̸= c is a position neighbor of c if

|POSITION(c).x− POSITION(c′).x| ≤ ∆ and
|POSITION(c).y − POSITION(c′).y| ≤ ∆.

A cell c is said to be a contact cell if (i) there exists a
position neighbor c′ of c whose position POSITION(c′) lies
within some obstacle j, i.e., ∃Oj ∈ Wobs s.t. Oj ∩ c ̸= ∅

Algorithm 1 Populating the CC arcs for a given pose

Input: Target pose (p, ψ)
Output: Sp,ψ

1: function HEURISTICARC(a)
2: if κ(a) > κmax or
3: θ(a) > θmax or
4: InCollision(a) then
5: return ∞
6: return ℓ(a)

7: function POPULATECCARCS(p, ψ)
8: OPEN ←(p)
9: c ←CELL(p, ψ)

10: S(p,ψ).insert(c)
11: while not OPEN.empty() do
12: u ←OPEN.extract()
13: a ←CC-ARC(p,ψ)(u)
14: ca ←CELL(u, ψ(a))
15: ha ←HEURISTICARC(a)
16: if ha <∞ then
17: h(ca) ←min{h(ca), ha + h(c)}
18: S(p,ψ).insert(ca)
19: for c′ in PositionNeighbor(ca) do
20: OPEN.insert(POSITION(c′))
21: return S(p,ψ)

and if (ii) the orientation of the cell differs from the local
tangent of Oj by at most ωcontact i.e., |ORIENTATION(c)−
ψfj (POSITION(c

′)) | < ωcontact. Here, ωcontact > 0 is
some user-provided threshold.

3) Algorithm: To recall, we start by settling the initial
heuristic value for all cells to ∞. We start by calculating
the set of all cells S(

pgoal,ψgoal

) that have valid CC arcs

directed towards the desired goal pose (pgoal, ψgoal). We do
so by calling PopulateCCArcs(pgoal, ψgoal) (detailed in
Alg. 1) that updates the heuristic value for each cell to be
the length of the calculated arc.

We then repeat the following process (summarized in



Algorithm 2 Algorithm for computing the heuristic

Input: Target pose (pgoal, ψgoal)
Output: h(c) ∀c ∈ C

1: function COMPUTEHEURISTIC(pgoal, ψgoal)
2: OPEN ←(pgoal, ψgoal)
3: h(c) ←∞ ∀c ∈ C

4: h(CELL((pgoal, ψgoal)) ←0
5: while not OPEN.empty() do
6: (p, ψ) ←OPEN.extract()
7: S(p,ψ) ←POPULATECCARCS(p, ψ)
8: for c′ in S(p,ψ) do
9: if IdentifyContactCell(c′) then

10: OPEN.insert(POSE(c′))
11: for c in C do
12: h(c) = min{h(c), h(c+), h(c−)}
13: return h

Alg. 2) : For each c in the priority queue OPEN (extracted
in a first-in first-out manner) such that c is a contact cell
and h(c) < ∞, we repeat the previous step by calling
PopulateCCArcs(POSE(c)) to update the heuristic value
of each cell that can reach c. If ca is one such cell that
can reach c with a valid arc a, we set its heuristic value as
h(ca) = min{h(ca), ha + h(c)}

4) Returning the heuristic value for a node: Once the
heuristic has been precomputed for grid cells using Alg. 2,
it can be used to return the heuristic value for a given node.
Given a node n, we compute the end effector (pn, ψn) of
the robot at n. We then compute the cell cn where this
pose lies (i.e., cn = CELL((pn, ψn)). As described earlier,
the CC assumption is only an approximation for the contact
mechanics and does not precisely reflect contact mechanics.
Thus, we introduce a final postprocessing smoothing step to
account for orientation errors. Specifically, to set the heuristic
value for cn we also consider the values of it’s neighboring
cells c+n and c−n which share the same position as c but differ
in the orientation by a value of ±α. Namely,

c+n := CELL(pn, ψn + α) and
c−n := CELL(pn, ψn − α).

Our final heuristic value for the node n will be

h(n) = min{h(cn), h(c+n ), h(c−n )}. (8)

E. Putting it all together—Search algorithm

In this work, we implement a greedy best-first search
algorithm [24]. Specifically, we make use of a priority queue
OPEN that orders search nodes (Sec. IV-A) according to the
the node’s heuristic value (Sec. IV-D.4).

The algorithm starts by initializing OPEN with a node
corresponding to the initial configuration qinit and runs
in iterations. Each iteration, the highest-priority node n
is extracted from OPEN, and is extended (Sec. IV-B) by
applying the set of actions A to its joint space values qn. For
each successor node n′, we compute its corresponding joint

space values using our forward kinematic model (Sec. III).
If n′ is valid and not a duplicate (Sec. IV-C), it is added
to OPEN. Finally, n is added to a so-called CLOSED set to
avoid re-expanding previously expanded nodes.

This process continues until a node that satisfies the end-
effector positional constraints specified in Problem 1, at
which point the search is concluded successfully or until
a maximal number of search iterations Nmax is reached at
which point the search is classified as unsuccessful.

V. EMPIRICAL EVALUATION

We evaluate our contact-based motion plannerMCAN with
our heuristic in simulation. Some sample motion plans and
their implementation on a motorized prototype [25] are in
the supplementary video.5

1) Kinematic model & planner parameters: The opti-
mization problem in Eq. (5) is solved using an interior-point
algorithm via MATLAB’s fmincon. We consider a robot of
radius 6mm with a maximum length of 250mm, represented
by m = 30 arcs. The planner parameters are listed in Table I.

TABLE I: Parameters for the heuristic calculation and motion planner.

Heuristic Motion Planner
Parameter Value Parameter Value

∆ 0.001m ϵ 0.01m
α 45◦ ω 15◦

κmax 250 m−1 δℓseg 0.001m
θmax 270◦ m−1 δℓten 0.001m

ωcontact 2.815◦ Nmax 7000

2) Environments: We consider three workspaces,W1,W2,
and W3 (see Fig. 5). W1 has five equally sized convex
circular obstacles while W2 features six circular obstacles
with random centers and radii that overlap, creating non-
convex shapes. Finally, W3 resembles a 2D cross-section
of the interior of a turbine engine. CAN’s potential use in
such cluttered environments guides our future work (refer to
Sec. VI). Specifically, the non-convex turbine blade shapes
are approximated by four circular obstacles each.

Recall that we compute a heuristic for the robot’s end
effector (Sec. IV-D) which can be modelled as a line segment
translating and rotating in the plane. Thus, to ensure that
we only consider collision-free end effector placements,
heuristic computation is done after inflating obstacles by an
amount equal to the robot’s width [26].

3) Queries: We generated for each workspace a set of
valid queries as follows: We start by setting the initial
configuration to qinit = (1, 1)mm. We then run a breadth-
first search (BFS) by varying the tendon and segment length
by 1mm. This creates a set of valid configurations with
corresponding end-effector poses for which a solution to
Problem 1 is guaranteed to exist. For each workspace, we
sample 175 such end-effector poses at random.

4) Baselines.: We compare our planner MCAN with two
baselines. The first baseline, which we denote byMcontactless,
is a planner that avoids contacts with the obstacles. Specif-
ically, in the kinematic model, contactless configurations

5Can also be found at https://youtu.be/da3eYGwzxts

https://youtu.be/da3eYGwzxts


have constant curvatures. Thus, Mcontactless performs inverse
kinematics [23] for points satisfying the position tolerance
and checks if the obtained solution satisfies the angular
tolerance as well and does not intersect with obstacles.

The second baseline, which we denote byMCAN-simpleh is
identical to our planner but uses a simple commonly-used
heuristic function hsimple := hxyz + w · hθ [27]. Here hxyz
represents the least-cost path from the tip to the goal,
computed via Dijkstra’s algorithm, hθ is the absolute angular
difference between the end-effector and the target orientation,
and w is a constant used to balance the two, set to be 0.01.

5) Success rate for different planners: In Table II, we
present each planner’s success rate in different workspaces.
Both baselines show significantly lower success rates, un-
derscoring the need for CAN and the proposed heuristic.
Failures of MCAN could be attributed to two factors: The
first is that the heuristic’s inexact approximation of contact
mechanics may not always guide the robot successfully. The
second is that, in many cases, if a particular path does
not result for a given sequence of contacts, the planner
tends to explore nearby nodes, without exploring paths with
alternative contacts. A potential remedy is to discern similar
configurations through soft duplicate detection [28], [29].

TABLE II: Success rate [%] of finding a solution for the different planning
approaches on the three workspaces.

W1 W2 W3

MCAN (proposed planner) 80.57 79.43 78.86
Mcontactless (baseline 1) 16.57 25.14 26.86

MCAN-simpleh (baseline 2) 29.71 19.42 28.57

6) Comparing the planner with BFS.: We compared our
planner MCAN with the BFS planner used to generate
queries, focusing on the number of contacts and the average
nodes expanded (see Fig. 5). The heatmap analysis indicates
that most solutions share a similar number of contacts, with a
tendency forMCAN to identify solutions with fewer contacts
if possible. Notably, forW2 with five contacts,MCAN finds a
simpler solution, reflected in a lower value in the barplot. The
barplot shows that the average number of nodes expanded by
both planners increase with number of contacts, with BFS
expanding more than 10 times the nodes expanded byMCAN.

VI. CONCLUSION & FUTURE WORK

In this letter, we present a motion planner coupled with
a novel heuristic that computes plans to reach a desired
pose. Achieving a success rate of roughly 80% over 525
target poses amidst convex and non-convex obstacles. This
efficiency stems from the proposed heuristic that enables the
planner to examine just a fraction of the entire search space.

We consider several directions for future work which we
briefly elaborate on:

1) Providing guarantees on the quality of the solution.:
The heuristic we propose in Section IV-D is not guaranteed
to be admissible, meaning it does not provide a lower bound
on the cost-to-go. Consequently, there is not guarantee on the
quality of the obtained solution by our planner. A potential
solution to this limitation is employing multi-heuristic A*

(a)W1

(b)W2

(c)W3

BFS sample
MCAN soln

BFS sample
MCAN soln

BFS sample
MCAN soln

#
co

nt
ac

ts
:

B
FS

# contacts: MCAN

N
xp

::
B

FS

N
xp :M

C
A

N

# contacts

#
co

nt
ac

ts
:

B
FS

# contacts: MCAN

N
xp

:
B

FS

N
xp :M

C
A

N

# contacts

#
co

nt
ac

ts
:

B
FS

# contacts: MCAN

N
xp

:
B

FS

N
xp :M

C
A

N

# contacts

Fig. 5: Comparison of our motion planner MCAN with the BFS planner
used to generate the queries across three workspaces. For each plot we
report (Top right) a heatmap showing the number of successful solutions
for both BFS (y-axis) and MCAN (x-axis), with numerical counts displayed
within each cell. (Bottom right) Nxp, the average nodes expanded (×1e3
for MCAN (purple) and BFS (grey)) with increasing number of contacts.
Please note that the y-axis scale differs between the two planners.

algorithms, which effectively incorporates both admissible
and inadmissible heuristics in a structured manner [30], [31].

2) Extending the planner to 3D environments.: To extend
MCAN for use in 3D environments, both the model and the
heuristic require modifications. The design of the proposed
motion planner is model-agnostic, allowing the potential use
of any model in literature. The heuristic would require vox-
elizing the spaces R3 and SO(3). Additionally, a challenge
would be to represent the potential twists in the robot’s
structure due to contact interactions. To address this, the
heuristic could be computed using arcs of uniform curvature
along the x and y-axes, combined with a constant rate of
twist around the z-axis.

An additional challenge is the computational effort: The
current 2D kinematic model accounts for 99.3% of the
computational effort, and shifting to a 3D model could
increase this due to the complexity of TDCR modeling.
Using a simplified approach, such as Euler curves [32],
to model the backbone under contact forces might offer



a feasible alternative. Another alternative may be to use
multiple resolutions during the search [20], [33].

3) Using the planner for inspection of turbine engines.:
While 21 DOF hyperredundant robots have been investigated
for turbine blade inspections [10], TDCRs with CAN offer
the advantage of performing the same task with fewer DOFs.
TDCRs mitigate the risk of blade damage due to their
compliance. With our proposed motion planner targeting
specific poses, future work will evolve into search-based
inspection planning [34], focusing on surface inspection by
orienting the robot appropriately.
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