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Breaking Symmetries Leads to
Diverse Quadrupedal Gaits

Jiayu Ding, Zhenyu Gan

Abstract—Symmetry manifests itself in legged locomotion in
a variety of ways: A legged system can maintain consistent
gaits from any spatial starting point, exhibiting the same leg
movements on either side of the torso in phase, and some
even demonstrate forward and backward movements so similar
they seem to reverse time. This work aims to generalize these
phenomena and proposes formal definitions of symmetries in
legged locomotion using terminology from group theory. In
this research, we uncovered an intrinsic connection among a
broad spectrum of quadrupedal gaits, which can be systemat-
ically identified via numerical continuations and distinguished
by elements within a symmetry group. These gaits, within the
hybrid dynamical system, are not merely isolated movements
but part of a continuum, seamlessly transitioning from one
to another at precise parameter bifurcation points. Altering
specific symmetries at these junctures leads to the emergence
of distinct gaits with unique footfall patterns, a phenomenon
we’ve generalized through dimensional analysis in this study.
Consequently, each gait manifests distinct preferred speed ranges
and specific transition speeds. This work offers a comprehensive
method to solve the gait generation problem for a quadruped,
including pronking, two types of bounding, four variations of
half-bounding, and two forms of galloping, and it also elucidates
the mechanical rationale behind the necessity of gait transitions,
providing high-level insight into the diversity and underlying
mechanics of quadrupedal locomotion.

Index Terms—legged robots, dynamics, passive walking

I. INTRODUCTION

LEGGED locomotion has become an increasingly promi-
nent area of research, as it has numerous applications

in the areas of biomechanics and robotics. Scientists and
engineers can develop better mobile robots by studying the
dynamics and control of animals as they transverse difficult
terrains in nature, for example. Among all these studies, a
considerable amount of attention has been paid to the periodic
motion patterns of legged systems, also known as gaits. Each
gait is observed to have a unique set of properties, such as
various leg movement patterns and oscillation modes of the
body, which can vary rapidly according to terrain, speed,
and body mass. For example, during the trotting gait of a
quadruped, the motion of the diagonal pairs of legs is fully
synchronized, and the torso barely rotates during the entire

Manuscript received: November 27, 2023; Revised February 8, 2024;
Accepted March 16, 2024. This paper was recommended for publication by
Editor Abderrahmane Kheddar upon evaluation of the Associate Editor and
Reviewers’ comments.

Jiayu Ding and Zhenyu Gan are with the Mechanical and Aerospace
Engineering, Syracuse University, Syracuse, NY 13244 {jding14,
zgan02}@syr.edu . This work was supported by a startup fund from the
Syracuse University.

Digital Object Identifier (DOI): 10.1109/LRA.2024.3384908.

ωswing

xI

vB

vB

yIzI

kleg

M, I

lb,H

l0

lb,F

xB

xB

yB

zB

zB

β

Anterior

Sagittal 
plane

(A) (B)

Posterior

qyaw

m0

Fig. 1. (A) A1 quadrupedal robot from Unitree Robotics with bilateral
symmetry and (B) a simplistic spring-mass model.

stride. Because of its simplicity, trotting gait is widely adopted
on quadrupedal robots such as the MIT mini-cheetah robot [1]
or the ETH ANYmal robot [2]. In contrast, animals may use
bounding gaits, which synchronize the motion within the front
and hind leg pairs, to jump across obstacles when limited space
can be deployed between footholds; or use galloping, which
are characterized by a rapid succession of footfalls followed by
a prolonged flight phase, to attain their maximum speeds. It has
been hypothesized that each gait has its own optimal speed,
and they play a key role in maintaining balance and saving
energy [3]. Similarly to changing the gears of the transmission
system in a car, by altering their gaits, legged systems have the
potential to travel longer distances or cover difficult terrains in
a shorter time. However, due to the high degrees of freedom in
legged systems and the intermittent ground contact with large
impulsive forces, studying legged locomotion and gait patterns
remains challenging. In spite of the fact that it is possible to
construct a hybrid model that can reproduce many common
quadrupedal gaits [4], it is not computationally feasible to
identify every possible gait due to the high dimensionality of
the model.

The concept of symmetries has been widely used in the
research of legged locomotion in order to reduce the com-
plexity of the study, reveal fundamental differences among
all gaits, and design locomotion controllers for legged robots.
For example, Hildebrand (1965) used the phase delays among
the leg pairs (front or hind) to categorize all the quadrupedal
gaits [5]. If the phase delay in the gait is equal to half of
the stride cycle, he called it a symmetrical gait; otherwise,
an asymmetrical gait. He suggested that all the symmetrical
gaits and asymmetrical gaits formed two distinct continua
[6] and animals like horses can smoothly switch from one
gait to another if they are closely related. Another type of
symmetry was brought up by Marc Raibert (1986) from his
early studies of running legged robots, in which he found when
the robot was moving backward, it was almost the same as
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moving forward in a time-reversed fashion [7]. More recently,
Razavi et al. (2017) introduced a new method to design stable
periodic walking gaits for legged robots based on producing a
type of odd-even symmetry in the system [8]. This approach
can identify symmetries in the system dynamics and generate
periodic walking without relying on any kind of offline or
online numerical search. Additionally, the study of symmetries
has been proven useful for data-driven analysis of robotic
systems [9]. By recognizing and exploiting data symmetries
through the use of invariant neural networks (NN), symmetry
constraints can lead to better sample efficiency and reduce the
number of trainable parameters.

In this study, we try to leverage the existing studies of
symmetries in legged locomotion [10] and group theory [8]
and seek to understand the inherent relationships among the
large number of asymmetrical gaits observed by Hildebrand
[11]. The contributions of our study are as follows. Firstly,
we provide formal definitions for each symmetry type found
in the existing literature, utilizing a generalized floating base
model for the legged system, thereby uncovering the intrinsic
relationships among these symmetries. Secondly, by using a
simplified model, we illustrate how breaking symmetries gave
rise to novel gait patterns and how various quadrupedal gaits
can be systematically identified and interconnected. These
findings confirm that gaits are oscillation modes of a hybrid
dynamical system and offer a framework for a general-
ized gait generation methodology that is versatile enough to
be adapted across a wide range of quadruped robots with
different mechanical designs. Lastly, we generalize all the
results using a dimensionless analysis and conduct parameter
studies, including variations in the torso’s center of mass
(COM) location, to illuminate the diverse mechanisms by
which symmetries are disrupted.

II. METHODS

Symmetries of mechanical systems are natural examples of
group actions, and they often provide a useful mechanism
to reduce the complexity of the problem by reducing the
number of variables. In this section, we seek to generalize
the commonly discussed symmetries in a legged system and
provide a systematic approach to analyze the symmetries of a
specific gait pattern. Furthermore, we introduce a simplistic
model that can reproduce a large number of quadrupedal
gaits and use it to demonstrate how symmetries break through
parameter bifurcations.

A. Models of Legged systems

A quadrupedal legged system can be approximated by a
floating-base model (FBM) consisting of rigid bodies with
mass and inertia, connected via joints to form an open
kinematic chain in 3-dimensional Euclidean space. Let Q
be the n-dimensional configuration space of the robot. We
use variables qT := [qx, qy, qz, qyaw, qpitch, qroll]

⊺ to represent
the Cartesian position of the torso’s geometrical center in the
inertial coordinate frame (I) and the torso’s intrinsic Euler
angles in the z-y-x order, respectively. For the i-th leg, the
joint vector (shape coordinates) qi refers to the relative angles

of the joints measured in their own body coordinate frames.
The index i ∈ L = {LH, LF, RF, RH} stands for the left hind,
the left front, the right front, and the right hind legs. By
collecting the leg configurations qL:= [q⊺

LH, q
⊺
LF, q

⊺
RF, q

⊺
RH]

⊺,
the generalized coordinates of the FBM are aggregated in a
single configuration space vector q:= [q⊺

T , q
⊺
L]

⊺. By applying
the Euler-Lagrange equation, the equations of motion of a
legged robot can be expressed in the following form:

M(q)q̈ +C(q, q̇)q̇ +G(q) = Sτ + J⊺(q)λ. (1)

where M(q) is the inertia matrix; C(q, q̇) is the Coriolis
matrix; and G(q) is the gravitational vector. τ denotes the
vector of joint motor torques and S is the selection matrix that
assigns motor torques to the generalized coordinates. When
a leg is in stance, the resulting ground reaction force λ is
mapped to the joints through Jacobi mapping J⊺(q).

In order to reveal symmetries in a dynamical system, we
developed a quadrupedal spring-loaded inverted pendulum
(SLIP) model, which consists of a rigid torso with mass M
and pitching inertia I and four legs with a resting length lo and
concentrated mass mo at foot position as shown in Fig.1(B).
The COM of the torso lies on the line between the shoulder
and hip joints. It is located at a normalized distance of lb,H
measured from the hip joint and a distance of lb,F from the
shoulder joint. The length of the torso is set to be equal to the
resting leg length lo. The legs are modeled as linear springs
with a stiffness kleg along the leg. They are connected to
the torso through additional torsional springs with oscillation
frequency ωswing. In this way, the legs can naturally swing
back and forth during flight and there is no need to control
the angle of attack for landing with additional parameters.
More information about this process can be found in our
previous work on modeling bipedal locomotion [12], which
has been omitted here. Without loss of generality, we focus on
the motion in the sagittal plane by reducing the configuration
space to qT = [qx, qz, qpitch] and qL = [αLH, αLF, αRF, αRH]
where αi are leg angles measured with respect to the torso.

While in flight phases, the legs are maintained at the resting
length lo and the torso is subjected to free fall. When a leg is in
contact with the ground, we assume the horizontal position of
a foot pxi is a constant value (no sliding motions). The values
of leg angles αi and leg lengths li can be computed implicitly
from the following kinematic constraints:

li(q) = [qz − lb,j sin(qpitch)] cos
−1(αi + qpitch), (2)

pxi (q) = qx − lb,j cos(qpitch) + li(q) sin(αi + qpitch).

where i ∈ {LH, LF, RF, RH}, indicating the index of legs, and
j ∈ {H, F}, indicating the COM distance from the hind or
the front joint. The contact Jacobian matrix of the i-th stance
leg can be calculated as Ji :=

∂gi
∂q where gi:= [li(q), p

x
i (q)]

⊺.
By combining (1) and the augmented contact Jacobian matrix
J⊺
k = [J⊺

FR,J
⊺
FL, · · ·] for all stance legs, we obtain k ∈

{1, 2, . . . , 16} possible domains for the quadrupedal model:

Fk:=
[
M(q) −J⊺

k(q)
Jk(q) 0

] [
q̈
λk

]
=

[−C(q, q̇)q̇ −G(q)

−J̇k(q, q̇)q̇

]
, (3)

where λk = [λ⊺
FR,λ

⊺
FL, · · ·]

⊺ contains the horizontal and
vertical ground reaction forces of all stance legs.



DING et al.: BREAKING SYMMETRIES LEADS TO DIVERSE GAITS 3

It is assumed in this work that each leg must touch down
(TD) and lift off (LO) the ground only once within one stride.
This assumption further implies that Zeno behavior cannot
occur in a proper motion from our model [13], [14]. The
timings of these two events for the i-th leg are denoted by
tTD
i and tLO

i , respectively. These eight timing variables (two
for each leg) are functions of the states (q, q̇), and the impact
surfaces are defined by the following sets:

CTD
i (t) =

{
(q, q̇) ∈ T Q | t = tTD

i (q, q̇), li(q) = lo, l̇i(q) < 0 }

CLO
i (t) =

{
(q, q̇) ∈ T Q | t = tLO

i (q, q̇), li(q) = lo, l̇i(q) > 0 }
(4)

that naturally divide all motions into 9 domains (j ∈
{1, 2, . . . , 9}):

Σ(t) :

{
Fj , (q, q̇) ̸∈ Cj(t);

q̇+ = ∆Fj→Fj=j+1
q̇−, (q, q̇) ∈ Cj(t);

(5)

in which ∆ is the impact map that instantaneously resets
the pre-impact velocity q̇− joint velocities to the post impact
velocities q̇+ for the next domain [15, Chapter 3].

B. Quadrupedal Gaits and symmetries

As described in the above section, the motion of a legged
system can be modeled as a hybrid system Σ that consists
of a set of differential-algebraic equations F describing the
continuous dynamics of the robot in each domain and a set
of impact maps ∆ that instantaneously reset the velocities.
The global behavior of such systems has been explored in the
literature, notably in [8], [13]. In this work, in order to focus
on quadrupedal locomotion with diverse footfall patterns, we
conduct a local symmetry analysis on the periodic solutions
of such systems. A gait of a legged system is defined as:

Definition 1 (Gait): Suppose the equations of motion of
a quadrupedal robot can be modeled as a continuous time
(t ∈ R) hybrid system Σ(t) on phase space X , where
x ∈ X ,x(t):= [q(t)⊺, q̇(t)⊺]

⊺. It is also assumed that in each
stride every leg is limited to a single strike and lift-off from
the ground. The dynamics of Σ(t) is given by an evolution
operator φt(X → X ) : x(τ) 7→ x(τ + t). We consider a gait
of a legged robot as a periodic orbit O ⊂ X i.e., there exists
a finite T > 0 such that O = {x(t) |Sx(t) = SφT (x (t)) =
Sx(t + T )}, where S = diag(0, 1, 1, 1...) is the selection
matrix, which excludes the horizontal position qx from the
periodicity.

In this definition, we assume the evolution operator φt is
unique in both forward time (t > 0) and backward time (t <
0). Given this assumption, we generalize the symmetries of
gaits through group theory, defining a symmetry as a group
action that transforms one gait into another within the same
system:

Definition 2 (Symmetry): For any gait O, the symmetries
form a group G. A symmetry of G on the gait O is an
assignment of a function Sg : O → O to each element g ∈ G
in such a way that:

• If I is the identity element of the group G, then SI is the
identity map, i.e., for every gait O we have SI(O) = O.

• For any g, h ∈ G, we have Sg ◦ Sh = Sgh, i.e., for every
gait O, we have Sg (Sh(O)) = Sgh(O);
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Fig. 2. This figure illustrates three prevalent types of symmetries of
a quadrupedal robot: (A) Time-Reversal Symmetry (a specific instance of
Temporal Symmetry) denoted as Gψ , wherein reversing all velocities yields
a backward-moving gait. (B) Spatial Symmetry denoted as Gξ , which
corresponds to 2-dimensional Euclidean isometries within SE(2) that involve
translations and rotations of the robot on the moving plane. (C) Morphological
Symmetry denoted as Gσ , representing permutations of leg motions that do
not alter the periodic movements of the robots.

• For any g ∈ G, there exists the inverse of g such that
Sg ◦ Sg−1 = SI ;

1) Temporal Symmetry: Since gaits are periodic, starting
from any point on the orbit, all states will return to their orig-
inal value after every T seconds. This immediately gives us the
first kind of discrete symmetry about time. The periodicity of
the states also suggests the conservation of linear and angular
moment in each direction over every T second.

Definition 3 (Temporal Symmetry): Suppose there are no
energy losses related to the impact map ∆, there exists a
finite T > 0 and specific timings t = nT (n ∈ Z+), and
the evolution operator φt forms a subgroup named tempo-
ral symmetry φnT such that φt1 ◦ φt2 = φt1+t2 for all
t1, t2 ∈ nT and φ−1

t = φ−t, in which −t corresponds
to reversing the motion and rewinding time for every gait.
Specifically, assume a state vector on the orbit takes the form
x(t) = [qT (t)

⊺, qL(t)
⊺, q̇(t)⊺T , q̇(t)

⊺
L]

⊺ ∈ O, the temporal
symmetry is a function Sφ : x(t) → x(t):

Sφ : [qT (t)
⊺, qL(t)

⊺, q̇T (t)
⊺, q̇L(t)

⊺]
⊺
, (6)

7→φnT [qT (t)
⊺, qL(t)

⊺, q̇T (t)
⊺, q̇L(t)

⊺]
⊺

Even though once a gait is identified, in theory, we can
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always rewind the time and find the inverse mapping of
the evolution operator, in reality, this process is usually
nonphysical and cannot be realized on the hardware. Under
the presence of damping, friction, or collisions, the reverse
mapping requires the legged system to reverse the energy flow
and absorb energy from its environment. Additionally, when
the projection ∆ is non-invertible, the solutions of a hybrid
system are often not unique in backward time. However, it has
been commonly observed that both humans and quadrupedal
animals utilize similar gaits when moving both forward and
backward [7]. Also, as a theoretical study, this is still a
very interesting phenomenon for many idealized energetically
conservative models, such as SLIP models proposed in the
previous section. Here we only consider a special instance
when the energy in the system is reversible and the reset map
is continuous i.e., an identity map, then we have the following
discrete symmetry:

Definition 4 (Time-Reversal Symmetry): The time reversal
symmetry is an action of Gψ on the gait O endowed with a
function Sψ that reverses the velocities:

Sψ : [qT (t)
⊺, qL(t)

⊺, q̇T (t)
⊺, q̇L(t)

⊺]
⊺
, (7)

7→φnT [qT (t)
⊺, qL(t)

⊺,−q̇T (t)
⊺,−q̇L(t)

⊺]
⊺

This symmetry implies that when a robot faces forward
while moving backward, it is identical to moving forward
in a time-reversed fashion. This definition of symmetry has
been discussed by Marc Raibert on his bipedal hopping robot
and quadrupedal bounding robot [7]. The reverse motion also
satisfies the same set of EoMs as the forward motion and
one cannot decide whether the system is moving forward or
backward just by looking at the motion pictures [16].

2) Spatial Symmetry: The environment of the system also
has huge effects on the symmetries of gaits. As we modeled
legged systems as FBMs in the Euclidean space, they are
known for having symmetries to translations and rotations. If
there is no gravity in the environment and the robot is floating
in space, every transformation SE(3) of the torso’s state is
a symmetry that preserves the mass and inertia of the bodies
and the linear/angular momentum of the robot. As soon as
the robot is subjected to gravity and constrained to move on
a surface, it breaks the spatial symmetry of the system. Here,
for simplicity, we only consider the ground (moving surface)
to be flat and perpendicular to the gravitational field.

Definition 5 (Spatial Symmetry): Given the assumptions
above, the 2 dimensional Euclidean isometries SE(2) form
a continuous symmetry subgroup Gξ ⊂ G of a gait O. An
action of Gξ on the gait O is an assignment of a function
Sξ : O → O to each element ξ ∈ Gξ in such a way that:

Sξ : [qT (t)⊺, qL(t)⊺, q̇T (t)⊺, q̇L(t)⊺]
⊺
, (8)

7→ [T (qT (t))
⊺, qL(t)

⊺, q̇T (t)
⊺, q̇L(t)

⊺]
⊺

where T is a linear transformation in SE(2) that changes the
torso’s position qx, qy and heading direction qyaw in the inertial
frame.

This is the most obvious but often ignored symmetry in a
legged system, which applies to any gaits. It suggests a robot

can start from anywhere in space with a certain height and
move in any direction using the same gait without altering
the leg movements. This is also referred to as the group of
linear transformations in mechanics and they represent changes
in coordinates without affecting the formula for differential
equations of motion [17]. One interesting example based on
this definition is that rotating the whole system in yaw qyaw will
not change the motion (Fig. 2(B)). As for a planner system,
it implies the model can also move in the opposite direction
by changing qyaw = π rad in the inertial frame. This will
be referred to as Sξ(π) afterwords. However, it is important
to distinguish this symmetry from the temporal symmetry
mentioned in the previous definition. Even though in both
cases, the robot is moving backward, the orientation qyaw of
the robot is not changed in the temporal symmetry.

3) Morphological Symmetry: In a similar fashion to the
morphologies of animals in nature, most of the robots also
possess a bilateral symmetry (left and right sides are mirrored
images of each other with respect to the sagittal plane) that
reduces complexity in design, manufacturing, and control.
This symmetry will also introduce additional geometrical
symmetries in gaits. The detailed discussion of modeling of
articulated leg configurations has been omitted due to space
constraints. In the following analysis, we assume that all legs
have an identical structure and they are connected to the torso
at the hip and shoulder joints such that the bilateral symmetry
of the system with respect to the sagittal plane is retained (see
the model in Fig1.B as an example).

Definition 6 (Morphological Symmetry): Assume a robot
has the bilateral symmetry as described above, the permuta-
tions σ of the index set of four legs L = {LH, LF, RF, RH} form
a discrete symmetry subgroup Gσ . Morphological symmetry
on the gait O is a function Sσ:

Sσ : [qT (t)
⊺, qL(t)

⊺, q̇(t)⊺T , q̇(t)
⊺
L]

⊺
, (9)

7→ [qT (t)
⊺, σ(qL(t))

⊺, q̇T (t)
⊺, σ(q̇L(t))

⊺]
⊺

Symmetries of leg permutations are abundant in
quadrupedal gaits and they were extensively discussed
in [5]. During a stride, these symmetries suggest that the
legs move in the same manner and contribute equally to the
dynamics of the system (Fig. 2(C)). There are various ways
in which these symmetries can be broken, for example, when
legs are no longer identical or when the location of the COM
is closer to one leg pair. It is demonstrated in the following
section that by altering one of the system parameters, e.g.,
the total energy, the discrete morphological symmetry can
be disrupted, potentially leading to unsynchronized leg
movements and a novel gait characterized by diverse footfall
patterns.

III. RESULTS

This section showcases our primary discoveries and illus-
trates how different parameter bifurcations break symmetries
in a simplistic model in distinct ways, leading to various
quadrupedal gaits and footfall patterns. In particular, we
employed numerical continuation techniques outlined in our
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earlier research [12] and sought out periodic solutions for the
model defined in equation (5). In this study, we revealed four
unique quadrupedal gaits (pronking, bounding, half-bounding,
and galloping) that demonstrate interconnections through di-
verse parameter bifurcations. The naming conventions of sev-
eral common quadrupedal gaits were adopted from the animal
locomotion literature using the footfall patterns [5], [18]. In
order to generalize our results for systems with different sizes,
we normalized all the values in our results using total mass
m of the entire system, resting leg length lo, and gravity g. In
addition, we took the limit of the foot mass mo to zero so that
m = M + 4mo = M to have an energy-conservative system
and avoid collision losses. For simplicity, most of the system
parameters were fixed in this study with kleg = 10 [mg/lo],
ωswing = 20 [

√
g/lo], and I = 2 [ml2o] according to the values

used by animals as described in [19]–[21].
To better understand the symmetry-breaking process, we

started the search with a quadrupedal model characterized by
the largest set of morphological symmetries i.e., all four legs
were identical and the COM was at the geometric center of the
torso. Then we broke various types of symmetries described
in the method section by varying the total energy E(q, q̇)
stored in the system and the COM location lb of the torso and
analyzed their influences on the footfall patterns of periodic
gaits. To simplify the numerical calculations and the analysis
of the periodic orbits, we selected the apex transition in the
flight phase as the Poincare section P = {(q, q̇) ∈ T Q | q̇z =
0, q̈z < 0, (tTD

i (q, q̇) mod T ) < (tLO
i (q, q̇) mod T ) }. In

the following figures, the fixed points P∗:=P(t) = P(t+ T )
on the Poincare section i.e., the periodic orbits O are visu-
alized using the torso’s horizontal velocity q̇x and pitching
velocity q̇pitch. This system has been developed in MATLAB,
and the source code is available for download from our GitHub
repository 1. Please also refer to the multimedia file or visit
the web page 2 to view animations of the gaits in this study.

A. Pronking and Bounding Gaits

1) Pronking (PF): is a quadrupedal gait frequently observed
in quadrupedal animals, characterized by the synchronized
movement of all four legs. During a single stride, there is
only one flight phase followed by a stance phase, during
which all four legs make contact with the ground, moving
in precisely the same manner. This results in zero torque on
the torso and the torso has no rotational motion throughout
the stride (q̇pitch = 0 [rad/s]). Our parameter continuation
process initiated with a simple seed solution, where the model
executed an in-place jump, with all four legs aligned vertically
downward (q̇x = 0 [

√
glo] and q̇pitch = 0 [rad/s]). When

the overall energy in the system was modified, the resulting
solutions constituted a one-dimensional curve (blue curve in
Fig. 3) with varying average speeds. Multiple consecutive
keyframes of the pronking gait, starting with an initial speed
of 5.2 [

√
glo], at the instances of the apex, touchdown, and

liftoff, were illustrated in Figure 3(a). In our definitions, the
pronking gait exhibits the largest number of symmetries. It

1https://github.com/DLARlab/BreakingSymmetryLeadstoDiverseGaits
2https://dlarlab.syr.edu/research/breaking-symmetries/

(c) BE

1 2 3 4 5 6

(b) BG

1 2 3 4 5 6

(a) PF

1 2 3 4

BE

BG

PF

c

a

b

A

Moving Forward

Fig. 3. Gait branches of pronking forward (PF), bounding with gathered
suspension (BG), and bounding with extended suspension (BE) on the
Poincare section with the torso’s horizontal velocity q̇x as the horizontal axis
and pitching velocity q̇pitch as the vertical axis. Examples of each gait (a-c)
are shown as successive keyframes at the touch-down, lift-off moments, and
the apex at the bottom. Black feet are used to highlight the legs in stance.

is characterized by the Time-Reversal Symmetry Sψ , which
means that by reversing the signs of the velocity states, one
can immediately identify another periodic motion without
changing the configurations or requiring additional numeri-
cal integration. As shown in Figure 3(a), this implies that
examining the keyframes of the pronking gait in the sequence
of 4-3-2-1 also represents a pronking gait moving in reverse
with a negative horizontal speed. Furthermore, it is worth
noting that due to the uniformity of the leg motions, the
pronking gait preserves all morphological symmetry related
to leg permutations Sσ , where σ ∈ SL ( SL denotes all
permutations of the set L).

2) Bounding (BG and BE): Compared to pronking gaits,
bounding gaits exhibit a breakdown in the coordination be-
tween the front and hind legs. Despite the synchronized
movements within the front and hind leg pairs, there is a
phase delay between legs on the same sides, leading to two
touchdown and liftoff events within a single stride. Our model
yielded two distinct types of solutions that adhere to this
pattern. In the first type of bounding gait, as depicted in
Fig. 3(b), the hind leg pair makes initial contact with the
ground, followed by the front legs, causing the leg pairs to
converge inward during the flight phase. This particular gait is
referred to as bounding with gathered suspension, as described
in [11], and we’ll abbreviate it as BG hereafter. In Fig. 3,
these solutions are represented by the solid orange curve,
which bifurcates from the PF branch at q̇x = 4.4 [

√
glo]

(designated as black dot A). The other type of bounding gait

https://github.com/DLARlab/BreakingSymmetryLeadstoDiverseGaits
https://dlarlab.syr.edu/research/breaking-symmetries/
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is characterized by the opposite sequence of touch-downs, as
shown in Fig. 3(c), where the front legs touch the ground
first, followed by the hind legs. Consequently, the swing leg
pairs extend outward during the flight phase, termed bounding
with extended suspension (BE). In Fig. 3, these solutions are
represented by red dashed curves, connected to the pronking
branch at the same bifurcation point A.

Although the footfall patterns and swing leg behav-
iors of these two bounding gaits differ, they share com-
mon underlying symmetries. Both BG and BE possess an
equal number of morphological symmetries Sσ , where σ ∈
{(LF,RF), (LH,RH), (LF,RF)(LH,RH)}. This means that the
system states of legs within the front or hind leg pairs follow
identical time series. Consequently, altering the states within
one or both leg pairs will not impact the system’s dynamics.
Contrasting with the PF gait discussed in the previous section,
the distinguishing feature in the bounding gaits lies in the
symmetry breakdown between the front and back leg motions,
represented by σ = (LH,LF)(RF,RH). This introduces a phase
lag in the leg pairs, which can be either positive or negative,
giving rise to two new gaits: BG and BE, originating from
point A. Furthermore, it is noteworthy that new periodic
orbits can be identified for both BG and BE gaits by merely
reversing all the speeds while retaining the same system
configurations. This highlights the presence of time-reversal
symmetry ψ. Without performing an additional numerical
search, the keyframes displayed in Fig. 3 (b)&(c) represent two
distinct periodic solutions with opposite moving directions:
one advances from the 1st frame to the 6th frame with a
positive speed, while the other moves in the reverse direction,
from the 6th frame back to the 1st frame with a negative speed.

B. Pronking and Bounding Gaits of an Asymmetric Model

The time-reversal symmetry ψ observed in the pronking and
bounding gaits illustrated in Fig. 3 offers a practical method
for identifying two periodic motions within a single numerical
search. Nevertheless, as demonstrated in this subsection, the
presence of this symmetry is strongly contingent on the mor-
phological symmetry concerning the frontal plane, where the
mechanical components of the system’s anterior and posterior
are mirrored. To be more precise, our findings indicate that
when the COM is shifted away from the body’s central point,
the pronking and bounding gait branches discussed in the
previous section undergo rapid changes.

We conducted numerical continuations using two models
with distinct parameters, where lb,H was set at 0.4 [lo] for the
model with the COM closer to the posterior, and 0.6 [lo] for
the model with the COM closer to the anterior. To clearly
differentiate the results, we utilize a trapezoidal shape to
represent the robot’s torso, positioning the COM closer to the
side with the longer base. During forward motion (q̇x > 0), the
pronking branch PF is no longer present in both models. This
absence is attributed to the differing lever arm lengths of the
four legs, preventing the leg forces from producing zero torque
on the torso during the stance phases when all four legs were
fully synchronized. In each of the models, we observe only
one type of bounding gait at a given speed. In the model with

(e) BE, l  = 0.60b,H

1 2 3 4 5 6

(d) BG, l  = 0.40b,H

1 2 3 4 5 6

BE

BG

PF

0.60

0.40

d

e

Moving Forward

l  = 0.40 [l ]0b,H

lb,H lb,F

lb,H
lb,F

l  = 0.60 [l ]0b,H

Fig. 4. The figure displays bounding gait branches for asymmetrical
models where lb,H ̸= 0. Two specific cases, lb,H = 0.40 [lo] and
lb,H = 0.60 [lo], are highlighted, with their corresponding solution branches
illustrated in orange and red, respectively. Solid lines represent bounding gaits
with gathered suspensions (BG), while dashed lines depict bounding gaits
with extended suspensions (BE). In contrast to the bounding gaits of the
symmetrical model shown in Fig. 3, our numerical analysis indicates that as
the COM shifts closer to the rear, BG manifests at intermediate speeds (d).
In contrast, when the COM is nearer to the front at lb,H = 0.60 [lo], BE
remains the exclusive bounding gait.

lb,H = 0.4 [lo] (as shown in Fig. 4(d)), BE appears within
lower speed ranges (indicated by the dashed orange curve),
while BG emerges (solid orange curve) as the exclusive gait at
speeds exceeding q̇x = 3.2 [

√
glo]. Conversely, in the model

with the reversed COM shift (depicted in Figure 4(e)), BE
(represented by the dashed red line) is the sole bounding gait
seen at speeds surpassing q̇x = 2.5 [

√
glo]. In comparison to

the symmetrical model discussed in the previous section, both
bounding gait branches are only present within intermediate
speed ranges and vanish rapidly when the speed exceeds
q̇x = 5 [

√
glo].

However, it is important to observe that, as depicted in
Fig. 4(d)&(e), the pitch angles are no longer zero, and the
magnitudes of leg angles differ during the apex transition in
the first and last frames. This indicates that the time-reversal
symmetry ψ is no longer preserved for a gait originating from
a model with lb,H ̸= 0.50 [lo]. Hence, reversing the speeds (via
ψ) does not result in discovering gaits that moved backward
i.e., observing the frames in the sequence of 6-1 does not
represent a periodic motion for the same model. Furthermore,
for a given speed, the model with full symmetry illustrated
in Fig. 3 has two feasible bounding gaits readily available.
In contrast, for the asymmetrical model depicted in Fig. 4,
only one bounding gait exists, and the viable footfall pattern
depends on the location of the COM.

C. Half-Bounding and Galloping Gaits
1) Half-Bounding (FG, FE, HG, and HE): are similar to

bounding gaits but the synchronization is broken in one leg
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pair. In these gaits, one of the leg pairs makes contact with
the ground simultaneously, while the other leg pair touches
down in rapid succession. Consequently, half-bounding gaits
can be classified as 3-beat gaits. We found in total four
variations of them based on the footfall patterns as shown
in Fig. 5. When this desynchronization occurred in the hind
leg pair, we found “half-bounding with spread Hind legs and
Gathered suspension” (HG) and “half-bounding with spread
Hind legs and Extended suspension” (HE). Similar to the
distinction between bounding gaits in BG and BE branches,
solutions within the FG and FE branches exhibit varying leg
orientations and pitching velocities during the apex transitions.
For instance, as depicted in Fig. 5, the HG gait branch (yellow
solid curve) emerges from point B on BG at a speed of
q̇x = 4.6 [

√
glo], while the HE branch (yellow dashed curve)

originates at point C on BE with a speed of q̇x = 6.1 [
√
glo].

As the solutions along the HG and HE branches approach point
A, all four legs tend to synchronize, ultimately converging with
the pronking branch at point A. The keyframes of periodic
solutions for these two gaits at the moments of touchdown,
liftoff, and the apex transition are illustrated in Fig. 5(f)&(h).
On the other hand, when the symmetry breaking occurred in
the front leg pair, we identified two additional half-bounding
gaits characterized by front legs in a spread position and gath-
ered suspension (FG) and front legs in a spread position and
extended suspension (FE). These two branches are represented
as green solid/dashed curves in Fig. 5, and they connect to
the bounding gaits BG and BE at bifurcation points D and E,
respectively, with forward speeds of 5.7 [

√
glo] and 4.8 [

√
glo],

correspondingly. Similarly, the FG and FE branches ultimately
converge with the pronking branch and merge at bifurcation
point A. Keyframes illustrating these two gait solutions can
be observed in Fig. 5(g)&(i). The break in symmetry in one
leg pair causes phase delays that ultimately lead to the half-
bounding gaits with different leading and trailing legs, which
resemble the bipedal skipping gaits discussed extensively
in our previous work [22]. During this process, only one
morphological symmetry is retained in the half-bounding gaits
i.e., σ = (LF,RF) or (LH,RH) and the time-reversal symmetry ψ
ceases to exist.

2) Galloping: In the study conducted by Hilderbrand
(1989) [6], a range of galloping gaits was identified, each
characterized by unique footfall patterns and aerial suspension.
In our research, we analyzed galloping patterns from the
proposed model and discovered two distinct types: “galloping
with gathered suspension” (GG) and “galloping with extended
suspension” (GE). These patterns are represented by purple
curves in Fig.6, connecting to the FG and HE branches at
bifurcation points F and G, marked as stars, with speeds of
ẋ = 6.0 [

√
glo] and ẋ = 6.2 [

√
glo] respectively. Similar

to the bounding gaits, these galloping gaits exhibit unique
touchdown sequences and swinging leg motions, reminiscent
of the galloping movements observed in natural horses and
gazelles. It is worth noting that, as per our definition, galloping
represents the least symmetrical gait due to the absence of all
symmetries in leg permutations. Despite this lack of symmetry,
solutions that retain time-reversal symmetry ψ are still present,
as depicted in Fig. 6(j)&(k). Due to space constraints, this

(i) FE

1 2 3 4 5 6 7 8

(h) HE

1 2 3 4 5 6 7 8

(f) HG

1 2 3 4 5 6 7 8

2 3 4 5 6 7
-0.05

-0.025

0

0.025

0.05

A

HE

FE

HG
FG

BG

PF

BE

f g

h
i

Moving Forward B

C

D

E

(g) FG

1 2 3 4 5 6 7 8

Fig. 5. This figure illustrates the gait branches of half-bounding as identified
from the proposed model. Since symmetry breaking can occur in either the
front or hind leg pair, during the numerical search, a total of four such gait
patterns were discovered from the two bounding gaits (BG and BE): (f) and
(g) demonstrate half-bounding gaits with gathered suspensions; (h) and (i)
illustrate half-bounding gaits with extended suspensions.

study does not distinguish between the right or left leading
legs in galloping gaits. Observations from animal locomotion
indicate that altering the motion of the front legs can result in
either a “rotary gallop” or a “transverse gallop” [23] which is
another symmetry that is not discussed here.

IV. CONCLUSIONS

In this study, we conducted a comprehensive exploration of
the symmetries in quadrupedal legged locomotion, employing
the principles of group theory. First, we established a sys-
tematic framework for defining gaits as periodic solutions of
a hybrid system, allowing us to categorize all the observed
symmetries in legged animals and robots into three primary
subgroups: temporal symmetry denoted as ψ; spatial symmetry
represented by ξ; and morphological symmetry σ. In this
framework, we found that any composition of these symme-
tries still constitutes a symmetry in the context of quadrupedal
locomotion. Consequently, the various quadrupedal gaits can
be effectively distinguished and predicted by quantifying the
number of elements within the symmetry group, thus shedding
light on the rich and diverse repertoire of various footfall
sequences of quadrupedal legged locomotion.

Secondly, to gain a comprehensive understanding of the
intricate relationships inherent in quadrupedal gaits, we devel-
oped a simplistic model and conducted numerical bifurcations.
This approach allowed us to visually depict how the disruption
of symmetries can precipitate changes in the existence of
gaits within a legged system. More specifically, our research
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Fig. 6. This figure displays the solution branch and keyframes for two
galloping gaits: (j) Galloping with gathered suspension (GG); (k) Galloping
with extended suspension (GE). In this visualization, the left legs are presented
in a transparent color, while black feet are employed to emphasize the legs
in the stance phase.

revealed that the pronking gait exhibits the highest number of
symmetries, with other gaits such as bounding, half-bounding,
and galloping branching out in a tree-like structure from one
to another: Stemming from the pronking gait, the desyn-
chronization of motion between two leg pairs results in the
emergence of two bounding gaits with gathered or extended
suspensions, as illustrated in Fig. 3. When only one leg pair
initiates movement out of phase, it simultaneously disrupts
both leg permutation and time-reversal symmetries, leading to
the discovery of four distinct half-bounding gaits, as depicted
in Fig. 5. These solutions were identified using a single energy-
conserving model without the need for additional control laws
or actuation. To some degree, they represent distinct oscillation
modes within the same hybrid system, triggered solely by
initial conditions like forward speed and the torso’s height.
This work not only provides crucial insights into the rationale
behind utilizing multiple gaits at varying speeds but also holds
the promise of an efficient and versatile strategy for generating
reference trajectories for robotic systems with desired footfall
sequences.

V. ACKNOWLEDGEMENT

The authors are grateful for the valuable suggestions pro-
vided by Dr. Amit K. Sanyal from the Mechanical and
Aerospace Engineering Department at Syracuse University.

REFERENCES

[1] B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for
pushing the limits of dynamic quadruped control,” in 2019 international
conference on robotics and automation (ICRA). IEEE, 2019, pp. 6295–
6301.

[2] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, et al., “Anymal-
a highly mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE, 2016, pp. 38–44.

[3] D. F. Hoyt and C. R. Taylor, “Gait and the energetics of locomotion in
horses,” Nature, vol. 292, no. 5820, pp. 239–240, July 1981. [Online].
Available: https://doi.org/10.1038/292239a0

[4] Z. Gan, T. Wiestner, M. A. Weishaupt, N. M. Waldern, and
C. David Remy, “Passive dynamics explain quadrupedal walking, trot-
ting, and tölting,” Journal of computational and nonlinear dynamics,
vol. 11, no. 2, p. 021008, 2016.

[5] M. Hildebrand, “Symmetrical gaits of horses,” Science, vol. 150,
no. 3697, pp. 701–708, Nov. 1965. [Online]. Available: https:
//doi.org/10.1126/science.150.3697.701

[6] ——, “The quadrupedal gaits of vertebrates,” BioScience, vol. 39,
no. 11, pp. 766–775, Dec. 1989. [Online]. Available: https://doi.org/10.
2307/1311182

[7] M. H. Raibert, “Running with symmetry,” The International Journal
of Robotics Research, vol. 5, no. 4, pp. 3–19, Dec. 1986. [Online].
Available: https://doi.org/10.1177/027836498600500401

[8] H. Razavi, A. M. Bloch, C. Chevallereau, and J. W. Grizzle, “Symmetry
in legged locomotion: a new method for designing stable periodic gaits,”
Autonomous Robots, vol. 41, pp. 1119–1142, 2017.

[9] D. Ordonez-Apraez, M. Martin, A. Agudo, and F. Moreno-Noguer, “On
discrete symmetries of robotics systems: A group-theoretic and data-
driven analysis,” arXiv preprint arXiv:2302.10433, 2023.

[10] H. Razavi, A. M. Bloch, C. Chevallereau, and J. W. Grizzle, “Symmetry
in legged locomotion: a new method for designing stable periodic
gaits,” Autonomous Robots, vol. 41, no. 5, pp. 1119–1142, July 2016.
[Online]. Available: https://doi.org/10.1007/s10514-016-9593-x

[11] M. Hildebrand, “Analysis of asymmetrical gaits,” Journal of Mammal-
ogy, vol. 58, no. 2, pp. 131–156, May 1977.

[12] Z. Gan, Y. Yesilevskiy, P. Zaytsev, and C. D. Remy, “All common
bipedal gaits emerge from a single passive model,” Journal of The
Royal Society Interface, vol. 15, no. 146, p. 20180455, Sept. 2018.
[Online]. Available: https://doi.org/10.1098/rsif.2018.0455

[13] A. M. Pace and S. A. Burden, “Piecewise-differentiable trajectory
outcomes in mechanical systems subject to unilateral constraints,” in
Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control, 2017, pp. 243–252.

[14] A. D. Ames, A. Abate, and S. Sastry, “Sufficient conditions for the
existence of zeno behavior,” in Proceedings of the 44th IEEE Conference
on Decision and Control. IEEE, 2005, pp. 696–701.

[15] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback control of dynamic bipedal robot locomotion. CRC
press, 2018.

[16] J. S. Lamb and J. A. Roberts, “Time-reversal symmetry in
dynamical systems: A survey,” Physica D: Nonlinear Phenomena,
vol. 112, no. 1-2, pp. 1–39, Jan. 1998. [Online]. Available:
https://doi.org/10.1016/s0167-2789(97)00199-1

[17] S. F. Singer, Symmetry in mechanics: A gentle, modern introduction.
Springer Science & Business Media, 2001.

[18] R. M. Alexander, “The gaits of bipedal and quadrupedal animals,” The
International Journal of Robotics Research, vol. 3, no. 2, pp. 49–59, June
1984. [Online]. Available: https://doi.org/10.1177/027836498400300205

[19] R. Blickhan and R. Full, “Similarity in multilegged locomotion:
Bouncing like a monopode,” Journal of Comparative Physiology A,
vol. 173, no. 5, Nov. 1993. [Online]. Available: https://doi.org/10.1007/
bf00197760

[20] D. T. Polet, “The murphy number: how pitch moment of inertia
dictates quadrupedal walking and running energetics,” Journal of
Experimental Biology, vol. 224, no. 5, Mar. 2021. [Online]. Available:
https://doi.org/10.1242/jeb.228296

[21] J. Ding, T. Y. Moore, and Z. Gan, “A template model explains
jerboa gait transitions across a broad range of speeds,” Frontiers
in Bioengineering and Biotechnology, vol. 10, Apr. 2022. [Online].
Available: https://doi.org/10.3389/fbioe.2022.804826

[22] Z. Gan, Z. Jiao, and C. D. Remy, “On the dynamic similarity between
bipeds and quadrupeds: A case study on bounding,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3614–3621, 2018.

[23] J. E. Bertram and A. Gutmann, “Motions of the running horse and
cheetah revisited: fundamental mechanics of the transverse and rotary
gallop,” Journal of the Royal Society Interface, vol. 6, no. 35, pp. 549–
559, 2009.

https://doi.org/10.1038/292239a0
https://doi.org/10.1126/science.150.3697.701
https://doi.org/10.1126/science.150.3697.701
https://doi.org/10.2307/1311182
https://doi.org/10.2307/1311182
https://doi.org/10.1177/027836498600500401
https://doi.org/10.1007/s10514-016-9593-x
https://doi.org/10.1098/rsif.2018.0455
https://doi.org/10.1016/s0167-2789(97)00199-1
https://doi.org/10.1177/027836498400300205
https://doi.org/10.1007/bf00197760
https://doi.org/10.1007/bf00197760
https://doi.org/10.1242/jeb.228296
https://doi.org/10.3389/fbioe.2022.804826

	Introduction
	Methods
	Models of Legged systems
	Quadrupedal Gaits and symmetries
	Temporal Symmetry
	Spatial Symmetry
	Morphological Symmetry


	Results
	Pronking and Bounding Gaits
	Pronking (PF)
	Bounding (BG and BE)

	Pronking and Bounding Gaits of an Asymmetric Model
	Half-Bounding and Galloping Gaits
	Half-Bounding (FG, FE, HG, and HE)
	Galloping


	Conclusions
	Acknowledgement
	References

