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Multi-Task Adaptive Gating Network for Trajectory
Distilled Control Prediction

Shoaib Azam , Member, IEEE and Ville Kyrki , Senior Member, IEEE

Abstract—End-to-end autonomous driving is often categorized
based on output into trajectory prediction or control prediction.
Each type of approach provides benefits in different contexts,
resulting in recent studies on how to combine them. However,
the current proposals are based on heuristic choices that only
partially capture the complexities of varying driving conditions.
How to best fuse these sources of information remains an
open research question. To address this, we introduce MAG-
Net, a Multi-Task Adaptive Gating Network for Trajectory
Distilled Control Prediction. This framework employs a multi-
task learning strategy to combine trajectory and direct control
prediction. Our key insight is to design a gating network that
learns how to optimally combine the outputs of trajectory and
control predictions in each situation. Using the CARLA simulator,
we evaluate MAGNet in closed-loop settings with challenging
scenarios. Results show that MAGNet outperforms the state-of-
the-art on two publicly available CARLA benchmarks, Town05
Long and Longest6.

Index Terms—Intelligent Transportation Systems, Autonomous
Agents, Imitation Learning, Gating Network, End-to-End Au-
tonomous Driving

I. INTRODUCTION

LEARNING effective driving policies is pivotal for the
development of end-to-end autonomous driving solutions.

Typically, these driving policies are distinguished based on
their outputs, falling into either trajectory prediction [1]–
[4] or direct control prediction categories [5]–[7]. Trajectory
prediction aims to forecast the vehicle’s motion in the future
over a specified horizon and uses separate controllers, for in-
stance, PID or model predictive controllers (MPC), to translate
the planned trajectories to the vehicle actuators. Conversely,
control-based methods optimize the control signal directly.
Both trajectory and direct control prediction have merits and
demerits. In particular, trajectory prediction outcomes can be
integrated with other tasks, like semantics and occupancy pre-
diction methods [8], or multi-agent interactions [9], enhancing
safety and refining the planned trajectory. However, since
trajectory prediction relies on controllers to convert planned
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trajectories into control signals, the type of controller used
may constrain its performance. On the other hand, control-
prediction methods often result in discontinuous and unstable
behavior because they make independent predictions at differ-
ent steps. However, a clear consensus on which paradigm is
superior remains elusive.

The underlying research question rarely studied in the liter-
ature is how to combine the trajectory and control prediction
based on observed situations. The pioneering work in this
direction is Trajectory-guided control prediction (TCP) [10],
which has developed a multi-task learning framework for com-
bining both prediction methods by heuristically determining a
situation-fusing parameter. However, this heuristic parameter
cannot fully capture the situation-dependency of the optimal
combination of trajectory and control predictions.

To fill this gap, we introduce MAGNet (Multi-Task Adap-
tive Gating Network for Trajectory Distilled Control Predic-
tion) by designing a gating network that learns the situation-
fusing parameter based on the perception of the environment.
MAGNET employs a multi-task learning strategy to perform
trajectory and control prediction simultaneously. MAGNet
incorporates the self-attention mechanism to distill the control
prediction branch with the trajectory guidance to address the
limitations of direct control methods that predominantly focus
on immediate low-level actions, often not fully capturing the
complexities of end-to-end autonomous driving. Moreover,
our method dynamically learns the situation-fusing parameter,
adapting to the environmental input representation, for fusing
the trajectory and control prediction outputs. By doing so, we
achieve a more dynamic integration of trajectory and control
predictions, enhancing the vehicle’s situational awareness.

The main contributions of this paper can be summarized as
follows:

1) We developed MAGNet with a novel gating network
that dynamically fuses control and trajectory predictions,
distinguishing it from traditional methods that typically
depend on static or heuristic-based approaches for in-
tegration. This methodological advancement empowers
the model to adapt its integration strategy to suit each
unique driving scenario. This flexibility is anticipated to
enhance the robustness and accuracy of driving policies.

2) We have integrated a self-attention mechanism into the
control prediction branch of MAGNet, primarily due to
its ability to enhance the model’s focus on the most
pertinent features derived from trajectory prediction. The
use of self-attention in this context is novel because it
allows MAGNet to selectively emphasize critical aspects
of the input data, which is crucial for making precise
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and efficient control decisions in dynamic and complex
driving environments.

3) Our evaluations and ablation studies demonstrate that
MAGNet’s situation-based fusing parameter outperforms
heuristic methods, with experimental results on CARLA
benchmarks confirming its efficacy over state-of-the-art
models in closed-loop settings.

II. RELATED WORK

A. End-to-end Autonomous Driving

End-to-end autonomous driving methods, classified into
trajectory and direct control prediction approaches, learn to
map sensor data to actions via imitation learning (IL) or
reinforcement learning (RL) [11]. RL, particularly model-free
reinforcement learning, is effective in autonomous driving,
adapting well to data shifts and proven successful in vehicle
control [12]. Furthermore, model-based methods learn the
world model using pre-recorded trajectories and compute
action-value functions, which, with sensor inputs, train a
policy for error-correct navigation [13]. Some studies separate
perception from the RL process in driving policy learning
[14]–[16].

In literature, end-to-end driving policies are often learned
through imitation learning, particularly behavior cloning. This
involves feature representation steps like mapping BEV se-
mantics to waypoint prediction [2], or incorporating global
and temporal reasoning [17]. Some studies also focus on a
unified framework that integrates perception, prediction, and
planning using intermediate representations [8], [18]. Sensor
fusion techniques are increasingly used in driving policy
learning, such as combining Lidar and image data with self-
attention and GRU-based decoders for trajectory prediction
[3], [19]. Additionally, some methods learn policies from both
ego and other vehicles’ perspectives using viewpoint-invariant
representations [9], and also improve the decoder for trajectory
learning [20].

Unlike the conventional trajectory prediction, direct control
prediction is another approach for learning the driving policy
[21]–[24]. Some studies have incorporated the perception
network and learned controller for post-trajectory prediction
for learning the control policy [5], [25], [26].

B. Multi-task learning and Knowledge Distillation

Multi-task learning trains networks on related tasks to
boost performance and generalization, a technique increasingly
applied in end-to-end autonomous driving systems [27]–[29].
FASNet, within a multi-task learning framework, forecasts
future states and actions using deep-predictive coding and
vehicle kinematics, with control signals produced from a
weighted average of predicted actions [30]. Similar to our
work, Trajectory-guided control prediction (TCP) follows a
multi-task learning framework for trajectory and control pre-
diction and then adopts a heuristic approach to fuse them [10].
Unlike TCP’s heuristic integration of trajectory and control
predictions, our method employs a learned fusion strategy via
a situation-aware gating network, adjusting fusion coefficients

for contextual precision. We also enhance branch interaction
with a self-attention mechanism, optimizing knowledge distil-
lation by prioritizing salient feature integration.

Knowledge distillation has been used in autonomous driv-
ing, training a privileged agent with extensive data and then
using it to train a sensorimotor agent with limited data [1].
Some studies include an an alignment module as enhance-
ment, to better transfer knowledge from teacher to student,
optimizing learning through a coaching approach [31].

III. METHOD

A. Problem Setting

In end-to-end autonomous driving, the objective is to trans-
late an input representation x into a corresponding control
action u. In this paper, we consider the input representation
which encompasses sensor signal si, vehicle speed υ, a high-
level navigation command ρ, a goal point (x, y). This goal
point (x, y) provides a target location for the vehicle’s navi-
gation, integral to the driving task. The resulting control action
constitute of longitudinal control signals: [throttle ∈ [0, 1],
brake ∈ [0, 1]], and the lateral control signal: [steer ∈ [−1, 1]].

In our research, we explore methods to contextually and
adaptively merge the outputs of trajectory and control pre-
diction in a learnable manner. For the trajectory prediction,
a point-to-point navigation approach is adopted by learning a
driving policy π that imitates the behavior of an expert policy
π∗ in a supervised manner with the loss function, L:

argmin
θ

E(x,W)∼D[L(W, πθ(x))] (1)

where W are the ground-truth waypoints and π(x) is the
learned policy for predicting the waypoint over the horizon T .
Similarly, the control branch is trained in a manner consistent
with behavior cloning in imitation learning, where expert-
provided control signals directly supervise the model’s current
control predictions, and it can be formulated as:

argmin
θ

E(x,u)∼D[L(u, πθ(x))] (2)

where D corresponds to the dataset. The dataset D is collected
by rolling the expert policy π∗ that interacts with the simulated
world. Each trajectory τ = (x0,u

∗
0,x1,u

∗
1, ...,xT) comprises

of state-action (x,u∗)
T
i=0 pairs, where u∗ includes the controls

signals and waypoints information, along with the goal point
data.

B. Architecture

Fig.1 provides an overview of the MAGNet architecture,
which consists of four main components: an encoding stage for
feature extraction, trajectory prediction and control prediction
branches, and a situation-based gating network for fusing
the outputs of these branches. The encoding stage is further
divided into two encoders. The image encoder (EIc ), built
on a ResNet [32] architecture, is responsible for extracting
feature embeddings (ICemb ) and feature vector (ICfeat ) from
the input RGB image. ICfeat is the feature vector from the
last block of ResNet module used in image encoder (EIc )
for the feature representation. Additionally, a measurement
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Fig. 1: Overview of architecture.The architecture comprises of three modules: trajectory prediction branch, control prediction
branch and gating network. The encoded features are shared by all the three modules. The gating network receive both outputs
from the trajectory and trajectory-distilled control prediction branch, and fuse them by learning the situation-based fusing
parameter.

encoder (EIm ) is employed to generate measurement features
(IMfeat

). The image feature embedding (ICemb ) is averaged
and concatenated with measurement features (IMfeat

) to form
combined feature vector F ∈ Rdc+dm , where dc and dm
are the dimensions of (ICemb ) and (IMfeat

), respectively. The
feature vector F is propagated to the subsequent two branches
and the gating network. The following sections detail the
trajectory branch, control branch, and situation-based gating
network.

1) Trajectory Prediction Branch: Unlike the control pre-
diction that directly predicts the control action, the trajectory
prediction branch, as illustrated in Fig.2, predicts the planned
trajectory over the horizon K, which are then processed by
low-level controllers utraj = I(W), where I corresponds to
the low-level controller, W corresponds to the waypoints. In
the proposed method, the trajectory prediction branch inputs
the combined feature vector F, down-sampled to a feature
vector of f = 256 by passing through a series of linear
layers. For predicting the next waypoints, we have employed
the auto-regressive GRU [33] model and initiated the hidden
states of the GRU model with the feature vector f . The
auto-regressive model, built on a GRU architecture, utilizes
the current position and goal location as inputs. This design
enables the network to concentrate on pertinent contextual
information within its hidden states, thereby enhancing its
ability to predict subsequent waypoints. Finally, a linear layer
followed by GRU layers is used to predict the next waypoints
(w0, w1, ..., wK) over horizon K = 4. Two PID controllers,
one for longitudinal and another for lateral control, process
the predicted waypoints for generating control actions in the
form of throttle, brake, and steer, respectively.

2) Control Prediction Branch: As illustrated in Fig.3, we
designed the control prediction branch to predict the multi-step
control actions in the future by distilling the information from
the trajectory branch. Since the traditional control prediction
methods follow the behavioral cloning approach, which relies
on independent and identically distribution, it does not hold in
the case of closed-loop settings. To address this limitation, we
employ self-attention to design a trajectory distilled control
prediction branch.

The control prediction branch comprises two branch net-
works: value and policy head. An initial feature vector F
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Fig. 2: Trajectory prediction branch. The architecture re-
ceives the encoded features F, down-sampled and passed to
GRU based decoder for predicting the next waypoints.

undergoes processing through a series of linear layers to
produce a down-sampled feature vector x, which is then
utilized by both the value and policy heads. In the trajectory
distilled control prediction, the self-attention is used initially
to compute the attention matrix A ∈ Rm×n, as shown in Eq.3,
where the Q,K and V matrices are derived from the measure-
ment features (IMfeat

). The rationale behind employing the
self-attention mechanism in our model lies in its capability
to independently evaluate and integrate input features, both
measurement and image data. This approach ensures contex-
tually informed and temporally coherent feature integration,
which is critical for making accurate decisions in dynamic
driving environments. It is to be noted here that the self-
attention employed in our trajectory distilled control prediction
branch is different from the TCP. TCP uses trajectory-guided
attention to focus on specific regions of the sensor input,
creating an attention map that aggregates 2D image features
for control prediction. However, MAGNet employs a self-
attention mechanism that merges measurement features with
image features, enhancing the model’s capability to focus on
the most relevant aspects of the input for control prediction.
This approach is more dynamic and context-aware, allowing
for integrating different types of input features.

A(Q,K,V) = softmax(
QKT

√
d

)V (3)

This initial attention matrix is used to compute the feature
embedding for the control prediction branch by taking the dot
product with image feature vector (ICfeat ). The core logic
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Fig. 3: Control prediction branch. The architecture for
predicting the multi-step control prediction through trajectory
branch supervision. GRU for multi-step control prediction and
self-attention for knowledge distillation between trajectory and
control.

unfolds within the temporal loop implemented as GRU with a
prediction horizon K. For each iteration [0,K− 1], the model
ingest a concatenated vector xin ∈ Rn+2p, where n and p
denote the dimensions of the current control state x and the
parameters µ and σ, respectively. The hidden state h ∈ Rq is
updated using the GRU decoder as illustrated in the Eq.4,

ht = GRU(xin,ht−1) (4)

where ht−1, which serves as hinis the input hidden state for
the GRU at the current time step t.

The hidden state h and a trajectory-guided hidden state
utrajhidden are subsequently used to compute a waypoint-
based attention map wpA using another self-attention mecha-
nism. This attention map is applied to ICfeat to produce a new
feature embedding, which is then combined with h to obtain
the merged feature. This merged feature updates xin as shown
in Eq.5:

xin = x+ dx+ µ+ σ (5)

Throughout the loop, the model refines these variables itera-
tively, generating a sequence of multi-step control predictions
(u0, u1, . . . , uK) that are dynamically and temporally coherent.
Incorporating self-attention mechanisms into the architecture
significantly enhances the model’s capacity for sequential
decision-making.

3) Gating Network: The gating network, as illustrated
in Fig.1, serves as high-level decision-making in fusing the
trajectory and control prediction outputs to yield an optimized
and context-aware command to the vehicle actuators. The
primary objective in designing the gating network is to fuse it
with situational awareness capabilities. It aims to dynamically
evaluate and choose between trajectory-based controls utraj =
I(W) and direct control signals uctrl = (u0, u1, . . . , uK)
from the control prediction branch. This enables the gating
network to make context-sensitive decisions in various driving
scenarios, such as navigating intersections, executing turns, or
overtaking other vehicles.

To this end, the gating network generates two outputs:
a high-level command gΦ and a situation-fusing parameter
gα, respectively, by receiving the combined feature vector F
as input. The high-level command gΦ encompasses a set of
commands including ’straight’, ’left turn’, ’right turn’, ’lane-
following’, ’change lane to the left’, and ’change lane to the

right’. The gΦ is an auxiliary information that is predicted
from the proposed MAGNet framework. Mathematically, let
F represent the situation context derived from the sensor in-
formation (e.g., image and measurements); the gating network
can be expressed as in Eq.6:
(gΦ,gα) = G(F,utraj,uctrl) (6)

gα is a function of F and the outputs utraj, uctrl from the
trajectory and control branches as illustrated in Eq.7:

gα = softmax (Wgα · [F;utraj;uctrl] + bgα) (7)

where Wgα and bgα are learnable parameters. The softmax
function ensures gα is a probabilistic weighting factor in the
[0, 1] range. The high-level command gΦ network outputs the
discrete high-level commands and is expressed as in Eq.8

gΦ =Wout·ReLU(Whidden·BN(Win·F+bin)+bhidden)+bout
(8)

Finally, the output control action P is a weighted sum of
utraj = I(W) and uctrl = (u0, u1, . . . , uK), modulated by
gα is given by Eq.9 as:

P = gα · utraj + (1− gα) · (u0, u1, ..., uK) (9)

The model can thus adaptively balance long-term planning
and immediate reactive behaviors, making it highly robust and
adaptive to a variety of dynamically changing environments.

4) Loss Design: The MAGNet framework includes trajec-
tory planning loss Ltraj , control prediction loss Lctrl, auxilary
loss Laux and the gating loss LG. Since the MAGNet focuses
on incorporating the trajectory and control prediction in a
unified framework with situation-based fusion, the proposed
method was trained in two phases. In phase one, the trajectory
and control prediction branches are trained end-to-end without
a gating network and then frozen for training the gating
network in the second phase.

The trajectory loss Ltraj can be expressed as shown in
Eq.10

Ltraj =
K∑
i=1

‖wi − ŵi‖1 + λF · LF
(
f

(0)
traj , f

(0)
Expert

)
(10)

where wi, and ŵi signify the predicted and ground-truth
waypoints at time i, respectively. λF serves as a tunable weight
for the feature loss LF , which computes the L2 distance
between f

(0)
traj and f

(0)
Expert at the current time step, thereby

acting as an auxiliary supervisory signal. f (0)
traj is the feature

representation of the predicted trajectory at the initial state and
f

(0)
Expert represent the feature representation from the expert

demonstration. For the control prediction, the Lctrl loss is
expressed in Eq.11

Lctrl = KL(Beta(a0) ‖ Beta(â0))

+
1

K

K∑
i=1

KL(Beta(ai) ‖ Beta(âi))

+ λF · LF (f0
ctrl, f

0
Expert)

+
1

K

K∑
i=1

LF (f ictrl, f
i
Expert) (11)
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The loss function Lctrl comprises four terms. It uses Kullback-
Leibler (KL) divergence to measure the difference between
predicted and ground-truth Beta distributions, initially and over
future time steps i. A feature loss, weighted by λF , enhances
the model’s learning at each time step. The aggregated loss L
for phase one is:

L = λtraj · Ltraj + λctrl · Lctrl + λaux · Laux (12)

where Laux is the weighted sum of L1 loss for speed predic-
tion and L2 loss for the value prediction, respectively.

After training, the trajectory and control prediction branches
are fixed, and the gating network G is trained end-to-end. The
loss function LG is expressed in Eq.13.

LG =
∑

i∈{steer, throttle, brake}

λi ·
(
(ocombined,i − otraj,i)

2

+(ocombined,i − octrl,i)
2
)

+ λcommand · Lcommand
+ λL1 · L1 (13)

Here, λi, λcommand and λL1 are the hyper-parameters.
Lcommand is the loss between predicted high-level command
and ground-truth as expressed by Eq.14, whereas L1 corre-
sponds to regularization term given by Eq.15

Lcommand = −
6∑
c=1

yc log(pc) (14)

L1 =
∑
j

|θj | (15)

The combined output ocombined,i for each control signal i ∈
steer, throttle, brake is computed as a weighted average of
the outputs from the trajectory and control prediction branches,
denoted as otraj,i, and octrl,i respectively. The weights αtraj,i
and αctrl,i modulate these contributions as expressed in Eq.16.

ocombined,i =
tanh(αtraj,i · otraj,i) + tanh(αctrl,i · octrl,i)

2
(16)

IV. EXPERIMENTS

A. Benchmark

In this work, CARLA simulator used for the closed-loop
evaluation of the proposed method [34]. We have used two
widely used benchmarks, Town05 Long and Longest6 [3],
where the Longest6 benchmark uses the six longest routes of
each town (Town01-Town06) comprising 36 routes. In each
benchmark, the routes are defined by a sequence of navigation
points together with sensor and high-level command data (turn
right/left, lane changing and following, straight). The task in
closed-loop driving is to drive the autonomous agent to the
desired destination by simulating the traffic situation and also
include challenging scenarios, for instance, obstacle avoidance,
crossing unprotected intersections, and sudden control loss.

B. Data Collection

In our experiments, we choose Roach [16] for the super-
vision as an expert model. Roach is an RL-trained model
incorporating privileged information, including roads, routes,
lanes, vehicles, pedestrians, and traffic elements, rendered into
a 2D bird-eye-view (BEV) image. This learning-based expert
offers advantages over rule-based experts by providing a richer
set of information beyond just direct supervision signals.

For data generation, we adhere to the protocol outlined in
[10], rolling out an expert policy with privileged informa-
tion to gather the dataset using the CARLA simulator. Our
data collection settings utilize a monocular camera (front-
facing), IMU, GPS, and speedometer. We have collected data
in Town01, Town03, Town04, and Town06, under various
environmental conditions, resulting in 189K data points for
training.

C. Evaluation Metrics

Our model’s performance is assessed using CARLA Leader-
board metrics, focusing on Route Completion (RC) for
measuring route success, Infraction Score (IS) for traffic rule
adherence, and Driving Score (DS) as the primary metric
combining RC and IS for a holistic performance evaluation
[34] [3] [9].

D. Training Details

The training of the MAGNet is done in two phases. In the
first phase, the trajectory and control prediction branches are
trained end-to-end. For this, the image encoder adopts ResNet
architecture trained on ImageNet [35]. The size of the input
RGB image is 900 × 256, with the FOV of the camera set
to 100 deg. In the trajectory and control branch, the T = 4
corresponds to the next four future steps at 2HZ. For the
PID settings, we follow the same settings as proposed in [3],
where the values of Kp = 5.0, Kd = 1.0 and Ki = 0.5 are
for the longitudinal control, and the values of PID controllers
are Kp = 0.75, Kd = 0.3 and Ki = 0.75 for lateral
control. The hyper-parameters used in the training for phase
one are as follows: λtraj = 1, λctrl = 1, λF = 0.05 and
λaux = 0.05. For the training of the gating network (G), the
hyper-parameters are set as follows: λsteer = 1, λthrottle = 1,
λbrake = 1, λcommand = 1, and λL1

= 0.5. The training

TABLE I: Comparison of MAGNet with state-of-the-art meth-
ods on Town05 Long benchmark in terms of driving score
(DS), route completion (RC) and infraction score (IS).†shows
MAGNet results without attention.

Methods Sensors Metrics

RGB Lidar DS ↑ RC ↑ IS ↑

CILRS [25] [20] 3 7 7.80± 0.30 10.30± 0.00 0.75± 0.05
LBC [1] [20] 3 7 12.30± 2.00 31.90± 2.20 0.66± 0.02
Transfuser [3] [20] 3 3 31.00± 3.60 47.50± 5.30 0.77± 0.04
Roach [16] [20] 3 7 41.60± 1.80 96.40± 2.10 0.43± 0.03
LAV [9] [20] 3 3 46.50± 2.30 69.80± 2.30 0.73± 0.02
TCP [10] [20] 3 7 57.20± 1.50 80.40± 1.50 0.73± 0.02
Think Twice [20] 3 3 65.00± 1.70 95.50± 2.00 0.69± 0.05
Ours w/o attn† 3 7 69.74± 1.81 96.25± 2.30 0.71± 0.03

Ours 3 7 73.30± 3.90 98.50± 1.18 0.79± 0.05
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(a) (b) (c) (d)

Fig. 4: Visualization of MAGNet’s decision-making on CARLA benchmarks: (a,b) show urban driving in Town05 Long,
(c,d) in Longest6, highlighting ‘traj’ and ‘ctrl’ modes and the gating network’s effectiveness.

for both phases is done on 2 Nvidia V100 GPUs, having a
memory of 32GB each. The Adam optimizer [36] is used for
each training phase with a learning rate of 5×10−4 and weight
decay of 1 × 10−7. In both training phases, the models are
trained for 60 epochs having a batch size of 64.

E. Results

We compare the proposed method MAGNet with other
state-of-the-art methods on two publicly available benchmarks,
Town05 Long and Longest6, in closed-loop settings. Table-I
illustrates the quantitative results of MAGNet with the state-
of-the-art methods on Town05 Long benchmark. In our quan-
titative evaluation, the proposed method is equally compared
to the camera and Lidar-based state-of-the-art methods. As
the MAGNet employs a monocular camera for predicting the
diving policies, it obtains better driving, route completion, and
infraction scores when compared with camera-based driving
agents. Specifically, MAGNet achieves a driving score of
73.3± 3.9, 98.5± 1.18 of route completion, and an infraction
score of 0.69 ± 0.05, outperforming the ThinkTwice [20] (a
camera-based driving agent) by 12.8% in driving, 3.1% in
route completion and 14.5% in infraction scores, respectively.
Similarly, MAGNet also performs better when compared
with Lidar-based methods; for instance, MAGNet outperforms
LAV(a Lidar-based driving agent) [9] by a margin of 57.6% in
driving score, 41.1% in route completion and 8.2% in infrac-
tion score respectively. Since MAGNet follows a multi-task
learning framework, we compared our method to the baseline
method TCP [10], which also follows the multi-task learning
framework. Upon evaluation, the MAGNet outperforms the
TCP [10] baseline method by 28.2% in driving score, 22.5%
in route completion, and 8.2% in infraction score, respectively.

As for the Longest6 benchmark, MAGNet has also shown
better performance when compared with state-of-the-art meth-
ods as illustrated in Table-II. For instance, MAGNet achieves
the driving score of 71.43 ± 2.3, route completion score of
84.54±1.5, and infraction score of 0.87±0.05, as compared to
TCP [10], where it achieves the driving score of 42.86±0.63,
route completion score of 61.83 ± 4.19 and 0.71 ± 0.04 of
infraction score. Thus, MAGNet outperforms TCP [10] by a
margin of 66.7% in driving score, 36.7% in route completion,
and 22.5% in infraction score on Longest6 benchmark, re-

TABLE II: Comparison of MAGNet with state-of-the-art
methods on Longest6 benchmark in terms of driving score
(DS), route completion (RC) and infraction score (IS).†shows
MAGNet results without attention.

Methods Sensors Metrics

RGB Lidar DS ↑ RC ↑ IS ↑

LAV [9] [31] 3 3 48.41± 3.40 80.71± 0.84 0.60± 0.04
Transfuser [3] [31] 3 3 46.20± 2.57 83.61± 1.16 0.57± 0.00
WOR [13] [31] 3 7 17.36± 2.95 43.46± 2.99 0.54± 0.06
NEAT [2] [31] 3 7 24.08± 3.30 59.94± 0.50 0.49± 0.02
TCP [10] [31] 3 7 42.86± 0.63 61.83± 4.19 0.71± 0.04
CAT [31] 3 7 58.36± 2.24 78.79± 1.50 0.77± 0.02
Think Twice [20] 3 3 66.70 77.20 0.84
Ours w/o attn† 3 7 68.32± 2.50 79.17± 3.87 0.82± 0.02

Ours 3 7 71.43± 2.30 84.54± 1.50 0.87± 0.05

spectively. Similarly, when the proposed MAGNet is compared
with camera and Lidar-based methods, it performs better in the
driving, route completion, and infraction scores, as illustrated
in Table-II on Longest6 benchmark.

The efficacy of MAGNet is illustrated in Fig.4, showcasing
adaptability in various driving scenarios. The qualitative find-
ings align well with quantitative benchmarks, substantiating
its comparative effectiveness against state-of-the-art methods.

(a)

(b)

Fig. 5: Attention map visualizations for MAGNet: (a)
showing ‘traj’ mode selection highlighted by focused attention
regions, and (b) illustrating ‘ctrl’ mode selection where atten-
tion disperses relevant to control adjustments. These attention
maps illustrate that the model is learning the representations.

F. Ablation Study

This section presents a quantitative analysis of control-only,
trajectory-only, and our proposed method, using a uniform
feature extraction process with a ResNet-based image encoder
and a measurement encoder. The control-only model uses only
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TABLE III: Ablation Study between ours Control-only,
Trajectory-only, TCP, ours (heuristic) method, and ours
(MAGNet).

Methods Sensors Metrics

RGB Lidar DS ↑ RC ↑ IS ↑

Control-only 3 7 45.20± 1.54 71.56± 1.50 0.47± 0.07
Trajectory-only 3 7 39.50± 1.96 63.87± 2.23 0.55± 0.05
TCP [10] [20] 3 7 57.20± 1.50 80.40± 1.50 0.73± 0.02
Ours (heuristic) 3 7 65.70± 1.64 89.34± 1.50 0.72± 0.03

Ours (MAGNet) 3 7 73.30± 3.90 98.50± 1.18 0.79± 0.05

the control branch, while the trajectory-only model uses only
the trajectory branch. Control-only predictions use the feature
vector F and trajectory-only predictions down-sample F for
the GRU decoder to forecast future waypoints. As shown
in Table-III, control-only exhibits higher reactivity but more
infractions, and trajectory-only shows lower route completion,
both under-performing compared to our proposed method,
which combines both approaches with a situational gating net-
work, leading to superior performance metrics. Additional we
have extended our ablation study to include a heuristic-based
combination of control-only and trajectory-only module. We
have adopted the same heuristic-based approach used in TCP
for fair comparative analysis. While the heuristic approach
improved over the individual control-only and trajectory-only
models, it still did not achieve the performance level of our
integrated MAGNet approach as illustrated in Table-III.

We have conducted a statistical analysis to evaluate the
effectiveness of our MAGNet model. Our study assesses
MAGNet’s efficacy, focusing on the gα parameter within its
gating network and comparing it to TCP’s heuristics approach.
We investigated the impact of these parameters on throttle,
brake, and steer controls. Moreover, we demonstrated MAG-
Net’s adaptability to environmental changes through attention
maps, as shown in Fig.5. Table-I—II shows a quantitative com-
parison between MAGNet without attention and the proposed
MAGNet with attention.

Fig.6 (a—d) details the results of this comprehensive anal-
ysis, comparing MAGNet with TCP across different routes
and driving conditions. It highlights instances where the agent
alternates between ‘traj’ (trajectory) and ‘ctrl’ (control) modes
in response to varying situations. Notably, we found that
MAGNet’s throttle, brake, and steering profiles are signifi-
cantly smoother than those of TCP, demonstrating the efficacy
of our model. Additionally, the analysis reveals the adaptive
behavior of the gα parameter in MAGNet, which dynamically
adjusts based on the driving context. We also present a
distribution of ‘traj’ and ‘ctrl’ modes across various routes in
Fig.7. This distribution reveals that ‘ctrl’ mode is favored at
lower alpha values and ‘traj’ mode at higher ones, indicating
their respective suitability for different driving scenarios.

V. CONCLUSION

In this work, we present MAGNet, a framework de-
signed to learn situational fusion strategies that integrate
trajectory and direct control predictions. We also develop a
trajectory-distilled control prediction technique that leverages
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Fig. 6: Statistical comparison of MAGNet and TCP: (a)
shows MAGNet’s (gα) and TCP’s heuristic parameters; (b-d)
display their impacts on throttle, brake, and steering controls.

self-attention for multi-step control output predictions. Our
findings indicate that the situational fusion parameter can
be effectively learned without resorting to heuristic methods
for merging trajectory and control predictions. Notably, our
proposed approach surpasses the leading TCP method in a
closed-loop setting across two widely recognized benchmarks.
Furthermore, compared to state-of-the-art methods, including
those using camera and Lidar-based agents, MAGNet performs
better in driving score, route completion, and infraction score
metrics.

The challenge of effectively fusing situation-based parame-
ters in autonomous driving remains an open issue. While our
proposed work takes a significant step forward by adaptively
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Fig. 7: Alpha-Driven Mode Distribution: ‘ctrl’ mode is
common at lower alphas, ‘traj’ at higher, indicating strategic
mode selection.

learning the situation-based fusing parameter, it still needs
to incorporate rules-based methods. Specifically, combining
signal-temporal-logic (STL) with adaptive learning introduces
complexities in harmonizing these adaptive approaches with
established rules. The key challenge lies in ensuring their
cohesive operation to improve system safety and efficiency,
presenting a promising avenue for future research.
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