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Flexible Shaft as Remote and Elastic Transmission
for Robot Arms

Muhammad Usman⋆,1,2, Thierry Hubert1,3, Amin Khorasani1,3, Raphaël Furnémont1,3,
Bram Vanderborght1,2, Dirk Lefeber1,3, Greet Van de Perre1,2 and Tom Verstraten1,3

Abstract—Research on human-friendly robots focuses on safety
through software and hardware. Hardware-based safety offers a
significant advantage over software-based safety if an accurate
hardware model is integrated into the solution. Design of elastic
and off-joint actuation has established safety by hardware, where
the inherent qualities of elastic and lightweight nature make the
robot safe for interaction. Combining series elastic actuators with
cable/belt pulley-based remote transmission offers inherently safe
hardware design, albeit with increased design and modeling
complexity. This paper introduces remote and elastic actuation
as a single-element solution for robot arm design using a flexible
shaft. The test-bench approach studies the remote and elastic
effects of a flexible shaft-based transmission for a robot. A set
of nine flexible shafts, differing in length and diameter, are used
for benchmarking as 3-D surface empirical maps to facilitate
their optimal selection for robot design. An example 3 Degree
Of Freedom (DOF) robot arm using a flexible shaft as a remote
and elastic actuator is designed and modeled. A low-level control
based on a flexible shaft is proposed, backed by the experimental
results.

Index Terms—Compliant Joints and Mechanisms, Actuation
and Joint Mechanisms.

I. INTRODUCTION

ENGINEERS and researchers are diligently advancing
robotics for safe human-robot interaction. Safety in

robotics hinges on environment-aware design and compliant
mechanics. Robot’s torque control [1] [2] has been introduced
to achieve high performance by accurate torque sensing. Such
sensing allows the robot to overcome the non-linearities and
friction due to the gearbox employed in the actuation system,
resulting in virtually high back-drivability and compliance in
robots. Based on the technology, a set of robotic manipu-
lators developed with built-in compliance due to harmonic
reducer, harnessed for torque sensing using strain gauges
[3]. Although the torque control has successfully lowered
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the effective impedance of robots, the inherent characteristics
of high impedance due to rigid mechanical design make it
difficult for the technology to achieve safety without an active
control layer.

To mitigate safety limitations in high impedance actuators,
elasticity is introduced between the actuator output and the
load, reducing impedance and improving safety and energy
efficiency [4] [5]. Elastic actuation, with its advantages, pos-
sesses limitations in high-speed performance [6]. However,
their safety features drive exploration into variable stiffness ac-
tuators [7] to reap the benefits of both low and high stiffnesses
at the cost of mechanical complexity and low affordability.
Another method for enhancing inherent safety is to decrease
the overall moving mass of the robot through remote actuation,
reducing effective inertia and energy consumption. Cable-
driven manipulators [8] [9] offer good performance and safety
but with increased mechanical complexity and maintenance
due to strings’ creep and slack.

Combining elastic and cable-driven actuation in manipulator
design [10] achieves low effective mass for high-speed, safe
operation, albeit with increased design, modeling, and control
complexity. Zinn et al. [11] introduced a macro-mini approach,
using small on-joint motors for high-frequency tasks and
cable pulley with spring element for low-frequency tasks.
Shin et al. [12] adopted a similar concept with pneumatic
actuators to reduce mechanical complexity compared to cable-
driven elastic actuation. While these combinations enhance
robotic performance, they introduce mechanical complexity
and control challenges.

Cianca et al. [13] presented a Remote and Torsionally
Compliant Actuator (RTCA) for wearable robots, showcasing
the unified use of remote and elastic actuation with flexible
shafts. Flexible shafts, valued for compactness and simplicity,
have found applications in surgical robotics, including tools for
colonoscopes [14] [15]. Liu et al. [16] developed a soft gripper
with flexible shafts, offering bending compliance and torsional
stiffness for grasping and in-hand cap manipulation. As a uni-
fied solution of remote and series elasticity, flexible shafts hold
the potential for various robotics applications. Research work
in [13], [16] focuses on the design-specific empirical study
only to facilitate design and control in their robots. Hence,
there is a lack of benchmarking of the torsional and bending
characteristics of flexible shafts in relation to their physical
dimensions. Such benchmarking of flexible shafts based on
the design parameters of diameter and length can facilitate
the design of an optimal actuator for the target application.
Furthermore, there is no study on the series and parallel
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compliance of flexible shaft in the robots studied before, which
is an important characteristics to study separately and in detail.

Hence, this paper studies the transmission of torque to
a distal joint across a robot joint using a flexible shaft,
employing the bending and torsional compliance for series
and parallel elastic effects (discussed in Section II-C) to the
distal and preceding joint, respectively. The study thoroughly
investigates the compliance effects of the flexible shaft on a
test bench using nine flexible shafts varying in length and
diameter with the common material (carbon steel) and same
construction. Subsequently, a 3-degree-of-freedom robot in
anthropomorphic configuration is developed using a flexible
shaft as a transmission and elastic element for the third distal
joint. A selection procedure of flexible shafts is provided for
desired elasticity.

The paper is organized as follows: In Section II, the paper
discusses the characteristics of a flexible shaft with its effects
on a robot arm. In Section III, the experimental investigation of
flexible shaft-based transmission and elastic element for robot
arm using a test bench are provided and discussed. Section
IV discusses the 3-DOF robot developed using a flexible shaft
in three subsections: design, modeling, and control. Section V
discusses the research outcome and concludes the paper with
future work propositions.

II. FLEXIBLE SHAFT

A. Construction of Flexible Shaft

The flexible shaft is constructed by tightly winding multiple
wire coils of variable radius of helices on top of each other
around a core wire as shown in Figure 1(a) and (b). The
winding direction of adjacent coils is kept opposite to give
a bi-directional transmission potential as shown in Figure
1(a). With the increased radius of wires and the flexible
shaft’s global radius, D/2 as shown in Figure 1(a), the torque
transmission capability is increased at the cost of less bending
compliance. Like traditional springs, the increase in length, L
and decrease in diameter, D results in decreased torsional and
bending stiffness.

(a) Schematics

(b) Isometric View. (c) Helical Buckling.

Fig. 1. Flexible Shaft Construction and Characteristics

Due to its bending compliance, once a torque is transmitted,
it undergoes a helical buckling, as shown in Figure 1(c), caus-
ing reaction pull forces on the motor and load attachments. To

Fig. 2. Flexible Shaft with Conduit and End Fittings.

stabilize this behavior, a geometric constraint-based stiffness is
introduced around the flexible shaft as a flexible conduit with
bearings at the end for relative rotation, as shown in Figure 2.
The conduit ends are designed to provide connection fixtures
for the source and load ends. A conduit with a high torsional
and low bending stiffness is an ideal selection for the flexible
shaft. The conduit used is made of rubber sheath and flat strip
metal coil, which restrains the helical buckling of flexible shaft
to assist the transmission of torque.

The coil layers of the flexible shaft being tightly wound un-
dergo an elastic contact instead of rubbing against each other.
Depending on the direction of applied torque and winding
direction, the coils try to wind or unwind in the outermost
layer. This kinetic direction-dependency nature makes flexible
shafts possess an asymmetrical nature for the direction of
torque transmission.

B. Robot Arm Topology

To fully leverage the transmission capabilities of a flexible
shaft as a remote and series elastic transmission, the optimal
arrangement involves transmitting torque over the robot joint
to a distal joint, utilizing its bending compliance, illustrated
in Figure 3. It is preferable to position the actuation unit at
the base of the robot to achieve effective low inertia of the
moving mass of the robot.

MA

φB

Point B

Point A

MB

Robot Joint

Robot Base

Distal Robot Joint

F lexible Shaft

Joint Stiffness K

Fig. 3. Robot Topology Using Flexible Shaft.

Among the most commercially available robot arms, like
the KUKA arms and Universal Robots UR series, the most
adapted kinematic structure is an anthropomorphic robot arm
with the body joint axis perpendicular to the fixed platform
and shoulder-elbow joints parallel to it. As shoulder and elbow
joints are significant contributors to the payload manipulation;
thus, an elbow joint is considered to be vital for effective
remote actuation with a flexible shaft passing over the shoulder
joint. In this topology, the mass of the actuator unit is moved
to link 1, which is effectively the robot’s base, reducing the
robot’s effective mass.
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C. Effects of Flexible Shaft on Robot

Due to its construction of tightly wounded coils, a flexible
shaft offers torsional and bending elasticity if routed across a
joint for power transmission. The sections below discuss the
torsional and bending elasticity as series and parallel elastic
effects on the robot joints.

MB

Point A

Point B

MA

MB

Point A

Point B

MA

(b)(a)

Torsion Spring Nature

Bended Torsion
Spring Nature

Fig. 4. a) Series Elasticity at Distal Joint. b) Parallel Elasticity at Preceding
Joint.

1) Series Elastic Effect: The series elasticity exists due to
the helical torsion spring-like nature of the tightly wounded
coils on top of each other, as shown in Figure 4 a). This
series elasticity is in series with the distal joint motor driving
the flexible shaft. A set of two torsional mass-spring-damper
models is considered to comprehend the asymmetrical behav-
ior of flexible shafts due to the winding and unwinding of
the outermost coil under torsion. The positive direction of the
twist angle ∆θ is defined in the direction of the outermost
coil’s winding of the flexible shaft. A separate set of stiffness
and damping coefficients are considered for each direction.
The stiffness parameters Ksp and Ksn , damping parameters
Bp, and Bn are considered for positive and negative twist
angle ∆θ, respectively. Hence, the piece-wise function for the
output torque τ is given as:

τ = f(∆θ) =

{
J∆̈θ +Bn∆̇θ +Ksn∆θ ∆θ < 0

J∆̈θ +Bp∆̇θ +Ksp∆θ ∆θ ≥ 0
(1)

The inertia J is considered the same for both directions
of input torque, τ , since the cross-sectional geometry of the
flexible shaft is the same for both directions of torque.

2) Parallel Elastic Effect: For the obstacle or joint the
flexible shaft is passing through, it behaves like a helical
torsional spring under bending, providing parallel elasticity,
in parallel to the preceding joint motor causing the bend as
shown in Figure 4 b). Since there are many cascaded helical
springs in serial and parallel fashion, it is not easy to develop
a model based on it. However, using the bending formula of
Euler Beam Theory, it can be generalized concerning material
and physical dimensions. Hence, bending stiffness Kb is given
by:

Kb =
EI

L
=

M

φB
(2)

where, E is the Young’s modulus, I is the second polar
moment of inertia, L is the length of the rod, M is the moment
applied for φB bending deflection. Empirically, the effective

bending stiffness of a flexible shaft is calculated by measuring
moment, M and deflection, φB . The equation (2) is, though,
theoretically valid only for small deflections and linear in a
moment-deflection relationship, the empirical approximation
for flexible shaft proves to be nearly linear (discussed in
section III-B2), making its utility valid.

III. EXPERIMENTAL INVESTIGATION

A. Experimental Setup

The experimental setup (Figure 5) employs a Maxon brush-
less DC motor (Catalog no. 167178) with a planetary gearbox
(Gear ratio 91:1, catalog no. 203125) for series elasticity.
Flexible shafts from SSWhite UK Ltd. (MasterFLex) with
diameters ranging from 4-13 mm and lengths from 235-535
mm are used. Nine flexible shafts with variable diameters
and lengths are chosen for benchmarking, covering a stiffness
range from low to high, with a bending angle capability of
up to φB = 90◦. A DBRK-20 analog torque sensor (ETH-
Messtechnik) with a 20 Nm measurement range is utilized for
torque measurement, fixed at the load end of the flexible shaft.
An optical encoder EM2 from US Digital measures the twist
angle ∆θ between the motor’s output and the input of the
flexible shaft.

Fig. 5. Experimental Setup

A maxon brushed DC motor (Catalog no. 353295) with a
planetary gearbox (Gear ratio 51:1) is connected via a torque
sensor to the joint between two links for parallel elasticity (see
Figure 5). The setup utilizes Beckhoff IO modules, Maxon
Driver EPOS4, and TwinCAT EtherCAT for data acquisition.
Bellow shaft couplings compensate for axis misalignment
without backlash. Flexible shaft ends are fixed to prevent linear
contraction due to helical buckling.

A chirp signal ranging from 0.5 to 20 Hz is inputted to
the torque controller for each flexible shaft, with amplitudes
based on their nominal torque. The desired torque profiles are
followed as the bending angles vary from 0° to 90° in 15°
increments. Implementation utilizes MATLAB Simulink and
TwinCAT shell in Microsoft Visual Studio.

B. Experimental Results

1) Series Stiffness: Figure 6 shows the output torque, τ
of the flexible shaft (Diameter = 9 mm, Length = 450 mm)
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Fig. 6. Series Stiffness Results - D = 9 mm Length = 450 mm

alongside the deflection by twist angle, ∆θ for various bending
angles, φB . The inertial and damping terms from equation (1)
are identified to be negligible for series stiffness effect with
the change of input frequency from 0.5 to 20 Hz. This can be
identified by no change of shape of input-output characteristics
plot under the change of input frequency in Figure 6. The
stiffness term is estimated using the slope of input-output
characteristics of output torque and twist angle, ∆θ. The slope
of the torque concerning the twist angle declines with the
increase of bending angle consistently for both the positive
and negative sides of the twist angle. Increase in bending
deformation results in a compromise in torsional stiffness.
Being supported by the conduit, the increase in bending
angle assists the flexible to keep helical buckling or torsional
instability below the critical stage.
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Fig. 7. Model vs. Measured Input-Output Characteristics at φB = 45◦.

In Figure 6, one can see the non-identical behavior at both
sides of the twist angle due to the winding or unwinding of
the outermost layer of the flexible shaft. The unwinding of the
outer layer of coils results in a slight decline in the stiffness
of the flexible shaft compared to its winding direction as coil
jamming lessens effectively by a coil. Hysteresis increases
with the increase in bending angle, φB , as the deformation
of the flexible shaft increases in the form of torsion, bending,
and helical buckling. Figure 7 shows the model of equation (1)

fitted separately for both the positive and negative twist angle,
∆θ. The fit of model on the positive side of twist angle, ∆θ
is less accurate in comparison to the negative side. This owes
to the asymmetrical nature of the flexible shaft and relatively
different internal friction on each side. On the positive side
of the twist angle, there is a dominant internal friction effect
due to the outermost coil tightly compressing the internal
coils. A single-order polynomial is considered for finding the
stiffness characteristics of the flexible shaft on each side due to
their quasi-linear behavior. Internal friction analysis due to the
stresses between coil layers is left out for brevity. In Figure 7,
the experiment and modeled characteristics demonstrate that
the flexible shaft mainly behaves as an elastic element and has
less dominant inertia and damping terms with respect to those
of motor and load as there is no change of shape of the graph
under the change of velocity, acceleration and frequency of
input signal.

Fig. 8. Empirical Formulation for Series Elastic Effect.

The same set of fits is achieved for the other eight flexible
shafts, providing us a map of change of torsional stiffness
for diameter, D, length, L, and bending angle, φB . Using the
experimental stiffness values for both the positive and negative
side of twist angle and their rate of change to diameter, length,
and bending angle, a set of 3-D surfaces are generated using
non-linear regression as shown in Figure 8. A general equation
for torsional stiffness, Ks, with coefficient values for both
positive and negative twist angle, is given as:

Ks(D,L, φB) = p0+p1D+p2D
2+p3D

3+p4L+p5θ+p6D
2φB

(3)

TABLE I
COEFFICIENTS FOR STIFFNESS Ksp AND Ksn AS f(D,L, φB).

Coeffp Coeffn φB RMSEp RMSEn

p0 -26.97 -54.959 0 ◦ 0.51 0.98
p1 1.569e03 2648.8 15 ◦ 0.61 1.01
p2 -2.13e04 -3.6e04 30◦ 0.71 0.89
p3 1.21e05 0.18 45◦ 0.72 0.78
p4 -27.461 -0.024 60 ◦ 0.62 0.69
p5 0.028 0.064 75◦ 0.39 0.68
p6 -13.723 1.16 90 ◦ 0.17 0.62

Using the equation (3), one can estimate a torsional stiffness
of a flexible for a fixed diameter,D, length,L and bending
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angle,φB for an optimal design of series stiffness for the de-
sired robotic application. Here, pi are the coefficient provided
in Table I for the positive and negative side of the twist angle,
∆θ. In equation (3) and Figure 8, a non-linear relationship of
diameter, D and linear relation of length, L to stiffness, Ks

can be observed, declining linearly with the bending angle,φB .
This information is not available in the manufacturer’s catalog
[17], thus fulfilling the required design information.

2) Parallel Stiffness: Figure 9 shows the measurement of
the moment, M , with respect to a deflection or bending
angle φB at the joint. This result is achieved by continuously
bending the flexible shaft with and without torsion in both
directions of flexible shaft bending. Torsion-ed bending results
in no considerable difference from the non-torsion-ed bending.
Due to the straight/vertical initial configuration of the flexible
shaft, the bending stiffness of the flexible shaft assists the joint
motor in lifting its gravitational load with the increase in its
bending angle. The results show non-linearity with an increase
in the bending angle due to the bend angle approaching the
critical bending of the flexible shaft, where bending more takes
a considerable torque to achieve a small amount of bend.

-100 -50 0 50 100
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-6

-4

-2

0

2

4

6

8
Measured
Modeled

Fig. 9. Parallel Stiffness Result - D = 9 mm Length = 450 mm.

Figure 9 also shows an evident hysteresis region from a no-
bend to bend configuration and on return. This is the behavior
of flexible conduit made of rubber and elastic coil used
outside the flexible shaft. The visco-elastic rubber generates a
considerable region of hysteresis, causing the parallel stiffness
effect, a problem in joint control for torque mode. This
requires hysteresis estimation to overcome the problem, which
is left out for brevity in this paper.

Though approaching non-linearity at extreme bending an-
gles, a linear fit for approximation is achievable between
moment, M , and deflection, φB as shown in Figure 9. For sim-
plicity, linear regression is used to understand the relationship
between bending stiffness of the flexible shaft with the change
in length and diameter. This simplifies how the parallel spring
torque is affected on the preceding joint with the flexible
shaft’s change of diameter and length.Hysteresis modeling is
required to reduce the residual errors for the viscous nature
of this parallel stiffness effect. A map of parallel stiffness is
achieved for the same set of experiments for variable diameters
and lengths for eight flexible shafts. Figure 10 shows a 3-D
surface generated using non-linear regression for the set of
bending stiffness values and its trend for changes in diameter
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Fig. 10. Empirical Formulation of Parallel Elastic Effect.

and length. A general equation for bending/parallel stiffness
is given as:

Kb(D,L) = p0 + p1D + p2L+ p3D
2 + p4DL (4)

Using the equation (4) and coefficient values,pi in Table
II, an optimal parallel stiffness is achievable by selecting
the diameter,D, and length,L, of flexible shaft as per the
design requirements of the robot. The non-linear and linear
relation of the diameter, D and length, L is observed in the
experimental results and surface plot with respect to bending
stiffness values.

TABLE II
COEFFICIENTS FOR BENDING/PARALLEL STIFFNESS Kb AS f(D,L).

Coefficient p0 p1 p2 p3 p4 RMSE
Values 5.734 -60.3 -13.72 -0.014 4203 0.59

IV. ROBOT BASED ON FLEXIBLE SHAFT

Motor iG1
iG2 Load

Input drive− train

F lexible Shaft

Last− stage transmission

Fig. 11. Flexible Shaft Based Remote and Elastic Actuator.

Considering the dimensions and joint requirements of
KUKA LBR IIWA, a three DOF robot with similar kinematics
is designed using a flexible shaft as a remote actuator for a
third joint, with a rated torque of 66 Nm and speed of 1.31
rad/s. An actuator design based on flexible shaft transmission
can constitute different possibilities, as shown in Figure 11.
iG1 = 1, iG2 ̸= 1 allows for a selection of thin, flexible shaft
with a gearbox to be placed at joint 3, causing not a consid-
erable advantage against direct actuation. iG1

̸= 1, iG2
= 1

could be ideal for low moving mass but requires a very thick
flexible shaft for high joint torque requirements, making the
bending compliance high in magnitude and non-linear due to
high minimum bending radius values. iG1

̸= 1, iG2
̸= 1 is

a favorable choice to achieve remote actuation with a low
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TABLE III
DESIGN SPECIFICATIONS OF ROBOT BASED ON FLEXIBLE SHAFT.

Payload Reach L1 L2 L3

(kg) (mm) (mm) (mm) (mm)
15 820 200 420 400

q̇1 & q̇2nom q̇3nom τ1nom τ2nom τ3nom
(deg/s) (deg/s) (Nm) (Nm) (Nm)

85 75 31 138 67

moving mass of a robot as it allows for mass distribution
among two gearboxes.

The third joint actuation design is attained so that a single-
stage gearbox, iG2 is used on joint 3 , to attain low mass
and high back-drivability. The rest of the transmission ratio
is achieved through iG1 placed in the robot’s base. The
actuator motor with gearbox can be placed on joint 2 and
link 2. However, the parallel stiffness effect is not attained
at preceding joint 2, and the moving mass is not reduced as
effectively as placing it on link 1.

A. Mechanical Design

Fig. 12. Robot Based on Flexible Shaft.

1) Selection of Flexible Shaft: As a remote actuator for a
robotic application, a flexible shaft can be selected based on
required torque-speed requirements. However, as a series or
parallel elastic actuation, one can optimize a flexible shaft
selection for either series or parallel elasticity, not both at
once. As a remote actuator, the online technical characteristics
provided by SSWhite Technologies [17] serve as a good refer-
ence. However, this source provided non-consistent results for
the elastic characteristics of the shaft as per our experimental
results. An essential nature is worthy of notice in [17] that
the nominal ratings of the flexible shaft are a function of its
diameter only, which is non-identical with a rigid shaft. Hence,
one can select the diameter, Ddes of a flexible shaft based on
the nominal rating required and vary the length, Ldes of the
shaft in the robot’s dimensional limit range, [Lmin, Lmax] to
achieve the desired stiffness.

Using algorithm 1, one can estimate the desired series or
parallel elasticity,Kdes for a flexible shaft using equation (3)
or (4). In the case of parallel elasticity, it indirectly depends on
the series elasticity through the diameter and length selected.
For series stiffness, once a straight configuration’s desired
stiffness is achieved, the bending angle parameter,φB can be
changed to determine the stiffness change by bending using

Algorithm 1 Estimation of Series/Parallel Elasticity.
1: Ddes ← D(τreq, ωreq)
2: L← [Lmin, Lmax]
3: Ldes ← rand(L)
4: Nitr ← size(L)
5: δ ← Kdes −K
6: while i = 1 ≤ Nitr do
7: if δ > 0 then
8: Ldes = Ldes +

Lmax−Lmin

Nitr

9: else
10: Ldes = Ldes − Lmax−Lmin

Nitr

11: end if
12: i++
13: end while

equation (3). Due to the non-linear relationship of diameter
and implicit equations, (3) and (4), an iterative approach is
taken in Algorithm I.

Due to empirical fitting, there lies an error in both models
as curve fitting is achieved to minimize the root means square
error (RMSE). Due to the limited number of flexible shafts
tested, it is a compromise to make for the estimation of flexible
shafts’ stiffness parameters. A masterflex with a diameter of
9 mm and a flexible shaft’s length of 450 mm (end-to-end
length of 550 mm) is selected for the prototyping.

2) Robot Design: For 3 DOF robot design, the base joint
1 has a slew ring run by a set of gears actuated by a Tinsmith
erob80 actuator with a harmonic reducer of 50:1. Joint 2
is actuated using a tinsmith actuator erob142 with harmonic
reducer of 100:1. Joint 3 is actuated using a brushless maxon
motor with gear ratio 16:1 place at link 1 rotating inside the
base of the robot with the rotation of joint 1. At the output
of the joint 3 actuator, a flexible shaft is connected with an
encoder installed in between. The flexible shaft routes through
joint 2 and connects to a hypoid gearbox from NIDEC with
a reduction of 10:1. Supports along the length support the
flexible shaft to keep its deformation in a plane of bending
only. Table III shows the design specifications of the robot.
Figure 12 shows the CAD and the real robot with a payload.

Hypoid gearbox is selected over the right-angle transmission
of the worm, bevel, and bevel plus planetary gearbox due to
its high efficiency and compact nature. The robot is designed
to test the remote actuation using a flexible shaft as an initial
working prototype.

B. Dynamic Model

De Luca et al. [18] discusses the dynamic model for the
flexible/elastic joint-based robotic manipulators in detail. The
general form of the model is given by:

MSEA(q)q̈ + S(q)T θ̈ + C(q, q̇)q̇ + C1(q, q̇, θ̈)q̇ + g(q)

+K(q − θ) = 0

S(q)q̈ +B(θ)θ̈ + C2 (q, q̇) q̇ +K (θ − q) = τ

Here, q is the generalized symbol for joint coordinates;
θ is the actuator output coordinates. τ is the motor torques
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for the joints. B(θ) is the constant inertia matrix with ro-
tors inertial components. MSEA(q) = ML(q) + MR(q) +
S(q)B(θ)−1S(q)T is the inertia matrix for flexible joints-
based manipulator with rigid links, ML is the link inertia
matrix and MR is the motor’s rotor masses and inertial
components along other local axes. S(q) is the coupling matrix
between rotors and links rigid bodies. C1(q, q̇, θ̇) and C2(q, q̇)
are centrifugal and Coriolis terms due to the coupling between
rotors and links rigid bodies caused by the elastic element.
K.(q−θ) = τspring is the spring torque with stiffness, K and
deflection, θ − q. Using the above two equations, it can be
reduced to:

MSEA (q) q̈ + S (q)
T
θ̈ + S (q) q̈ +B (θ) θ̈ + C (q, q̇) q̇

+ C1 (q, q̇) q̇ + C2 (q, q̇) q̇ + g (q) = τ
(5)

For a robot with both series and parallel elasticity at every
joint, the dynamic model of the robot is given by:

MSEA (q) q̈ + S (q)
T
θ̈ + S (q) q̈ +B (θ) θ̈ + C (q, q̇) q̇

+ C1 (q, q̇) q̇ + C2 (q, q̇) q̇ + g (q) +KPEAq = τ
(6)

Where KPEA is the parallel stiffness matrix for a parallel
stiffness at every robot joint. For joint motors at joints 1 and
2, the coupling between the rotor of joint 2’s motor and the link
1 is neglected due to orthogonal axes. For the case of remote
actuation, where the rotor’s rotation axis is orthogonal to the
joint 2’s axis, the coupling between the rotor and link is also
nullified. In the case of the robot based on the flexible shaft,
the axis of rotation of the motor for joint 3 is perpendicular to
the second joint’s axis. However, link 1’s axis is aligned with
joint 3’s motor, which introduces a coupling between them.
Also, the mass of the actuator for joint 3 being placed at the
center of link 1 introduces additional inertia given as mr3r

2
3 .

The joint stiffnesses of harmonic drives at Joints 1 and 2 are
considered to be nearly rigid and their deflections goes to zero,
q − θ → 0 . However, one can introduce a stiffness value for
harmonic drives in the model easily. Thus, the matrices are
given as (in Coordinate Form Notation):

KSEA3X3
=

{
(1, 1,∞), (2, 2,∞), (3, 3,Ksi

2
G2

)
}

MR3X3
=

{
(1, 1,mr3r

2
3)
}

; S3X3 = {(1, 3, Ir3−zziG1
)}

B3X3 =
{
(1, 1, Ir1,zzi

2
1), (2, 2, Ir2,zzi

2
2), (3, 3, Ir3,zzi

2
G1

)
}

Here, Ks is the series stiffness of the flexible shaft, and iG2

is the gear ratio of the hypoid gearbox. mr3r
2
3 is the inertial

component of the rotor for joint 3 along the joint 1’s axis.
Masses of other rotors are considered to be included with
the links. Iri,zz is the inertia of the rotor of joints 1,2 and
3 along the local z-axis; i1 and i2 are the transmission ratios
of motors for joints 1 and 2. Since S is a constant matrix, C1

and C2 are zero. Due to the presence of parallel stiffness only
along the second joint of the robot, KPEA matrix is given as:
KPEA3X3

= {(2, 2,Kb)}. Hence, for the case of robot based
on flexible shaft, the equation (6) is given as:

MSEA (q) q̈ + S (q)
T
θ̈ + S (q) q̈ +B (θ) θ̈ + C (q, q̇) q̇

+ g (q) +KPEAq = τ
(7)

C. Control of Flexible Shaft

Cianca et al. [13] proposed a control methodology for a
flexible shaft based actuator using an empirical formulation
of the Fourier series, incorporating the radius of curvature,
R. The same approach is adapted for the bending angle,
φB , instead of the radius of curvature, R due to ease of
measurement. Our experimental analysis has shown that inertia
and damping coefficients are quite small compared to the
dominant inertia and damping coefficients of load and motor
due to no-change of shape of input-output characteristics in
Figure 6 with the change of input frequency.

Using equation (1), the set of coefficients Ksn and Ksp

are identified for each direction of twist angle using the
experimental data shown in Figure 6. These coefficients’ trend
of decline due to bending angle is mapped using a polynomial
fit to include the effect of bending angle,φB = [−2π

3 , 2π
3 ]. Due

to the small magnitude of J and B terms, the equation (1) can
be simplified and the adapted equation for various bending
angles is given as:

τ = f(∆θ, φB) =

{
Ksn∆θfpn(φB) ∆θ < 0
Ksp∆θfpp(φB) ∆θ ≥ 0

(8)

Fig. 13. Low Level Control of flexible shaft based actuator.
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Fig. 14. Actual vs. Desired Position Tracking of Joint 3.

Figure 7 shows the linear model fit based on equation (8) on
a bending angle φB = 45◦. The low-level control of flexible
shaft-based actuator is implemented using the equation (8), as
shown in Figure 13. The twist angle ∆θ is measured using a
set of two encoders before and after the flexible shaft, which
provided the values of θm and θs. A desired torque for a
reference trajectory of joint position is fed to the low-level
control block of a flexible shaft-based actuator to attain the
desired position tracking. The bending angle values φB are
measured through the joint encoder of joint 2 and fed into the
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low-level controller. At a motor driver level, a speed controller
is implemented using the EPOS4 motor driver. A simple PID
controller translates the difference in desired τd and actual
modeled torque τm values at joint 3 to the desired angular
speed for the motor ωd.

Joint 3 utilizes the joint encoder as a feedback sensor
for position control with the proposed controller. Figure 14
illustrates the tracking of the flexible shaft-based actuator’s
actual position to the desired sinusoidal position within a 0
to 90◦ joint angle range. Well-tuned parameters enable good
trajectory tracking by the controller. However, inaccuracies in
the model arise from hysteresis in the torque-twist angle profile
of the flexible shaft. Additionally, non-linearity in hypoid
and planetary gearboxes, along with non-collocated feedback
sensors, can lead to instability at high disturbances, requiring
adjustment of tuning parameters for different loads.

V. DISCUSSION AND CONCLUSION

The paper discusses the characteristics and usefulness of
flexible shafts in robot arms. Experiments varied shaft length
and diameter to understand their characteristics. Torsional
stiffness decreases linearly with bending angle and length
but shows a nonlinear relationship with diameter. 3-D sur-
face maps of torsional stiffness changes were approximated
using nonlinear regression. Empirical formulations estimate
torsional and bending stiffness based on diameter, length, and
bending angle. Hysteresis in bending stiffness complicates
torque control of preceding robot joints. Like rigid shafts and
torsional springs, material characteristics can be accounted for
by adjusting polynomial coefficients in stiffness equations (3)
and (4).

Using a flexible shaft as an actuator offers several advan-
tages in robot arm design. Its series elastic effect on Joint
3 helps to decouple inertia from its actuation unit on Link
1 and acts as an energy buffer under load [5]. The parallel
elastic effect reduces static torque on Joint 2 by approximately
8 Nm, acting as an imperfect gravity compensation [5]. Its
remote nature allows mass relocation towards the base while
transmitting torque across joints, reducing inertia and energy
consumption [9]. Compared to belt/cable pulley systems, it
simplifies kinematics without needing additional tensioning
mechanisms.

The design, modeling, and control of a robot utilizing
flexible shafts were discussed, focusing on optimizing its
performance. Future work will concentrate on refining the
robot arm’s design to maximize the benefits of flexible shafts
in remote actuation and elasticity. Special attention will be
given to developing hysteresis compensation techniques for
accurate torque control in robot joints, particularly for series
and parallel elasticity. Understanding the relationship between
internal stresses in flexible shafts and bending angles requires
improved physics-based models. For series stiffness, rate-
independent hysteresis can be effectively modeled using the
Maxwell Fit Model [19], while for parallel stiffness, address-
ing the viscous nature of the conduit material is essential,
possibly through improved modeling using rate-dependent
hysteresis modeling [20].
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