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Elliptic-Cylindrical Wavelets: The Mathieu Wavelets

M. M. S. Lira∗ H. M. de Oliveira† R. J. Cintra†

Abstract

This note introduces a new family of wavelets and a multiresolution analysis, which exploits

the relationship between analysing filters and Floquet’s solution of Mathieu differential equa-

tions. The transfer function of both the detail and the smoothing filter is related to the solution

of a Mathieu equation of odd characteristic exponent. The number of notches of these filters

can be easily designed. Wavelets derived by this method have potential application in the fields

of Optics and Electromagnetism.
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1 Introduction

In 1868, the French mathematician É. Léonard Mathieu introduced a family of differential equations

nowadays termed Mathieu equations in his “memoir on vibrations of an elliptic membrane” [1].

Mathieu’s equation is related to the wave equation for the elliptic cylinder. Mathieu is notably

remembered for his discovery of sporadic simple groups [2]. This paper is particularly concerned

with the canonical form of the Mathieu Equation. For a ∈ R, q ∈ C, the Mathieu Equation is given

by
d2y

dω2
+ (a− 2q cos(2ω))y = 0. (1)

The Mathieu equation is a linear second-order differential equation with periodic coefficients. This

equation was shown later to be also related to quantum mechanicals; the parameters a and q denote

the energy level and an intensity, respectively. For q = 0 it reduces to the well-known harmonic

oscillator, a being the square of the frequency [3]. The solution of (1) is the elliptic-cylindrical

harmonic, known as Mathieu functions. In addition to being theoretically fascinating, Mathieu

functions are applicable to a wide variety of physical phenomena, e.g., diffraction, amplitude dis-

tortion, inverted pendulum, stability of a floating body, radio frequency quadrupole, and vibration
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in a medium with modulated density [4]. They have also long been applied on a broad scope of

waveguide problems involving elliptical geometry, including: (i) analysis for weak guiding for step

index elliptical core optical fibres [5], (ii) power transport of elliptical waveguides [6,7], (iii) evalu-

ating radiated waves of elliptical horn antennas [8], (iv) elliptical annular microstrip antennas with

arbitrary eccentricity [9], and (v) scattering by a coated strip [10].

The aim of this paper is to propose a new family of wavelets based on Mathieu differential

equations. Wavelets are a well-known tool for differential equation solving [11–13]. However, in

this work, we show another connection between wavelets and differential equations: the design of

new wavelets from the solution of a differential equation.

2 Mathieu Equations

In general, the solutions of (1) are not periodic. However, for a given q, periodic solutions exist for

infinitely many special values (eigenvalues) of a. For several physically relevant solutions y must

be periodic of period π or 2π. It is also convenient to distinguish even and odd periodic solutions,

which are termed Mathieu functions of first kind. One of four simpler types can be considered:

Periodic solution (π or 2π) symmetry (even or odd). For q 6= 0, the only periodic solution y

corresponding to any characteristic value a = ar(q) or a = br(q) has the following notation:

Even periodic solution

cer(ω, q) =
∑

m

Ar,m cosmω for a = ar(q), (2a)

Odd periodic solution

ser(ω, q) =
∑

m

Ar,m sinmω for a = br(q), (2b)

where the sums are taken over even (respectively odd) values ofm if the period of y is π (respectively

2π). Given r, we denote henceforth Ar,m by Am, for short. Elliptic cosine and elliptic sine functions

are represented by ce and se, respectively. Interesting relationships are found when q → 0, r 6= 0 [14]:

lim
q→0

cer(ω, q) = cos(rω), lim
q→0

ser(ω, q) = sin(rω). (3)

One of the most powerful results of Mathieu’s functions is the Floquet’s Theorem [15]. It states

that periodic solutions of (1) for any pair (a, q) can be expressed in the form

y(ω) = Fν(ω) = ejνωP (ω) or

y(ω) = Fν(−ω) = e−jνωP (−ω),
(4)

where ν is a constant depending on a and q and P (·) is π-periodic in ω. The constant ν is called the
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characteristic exponent. If ν is an integer, then Fν(ω) and Fν(−ω) are linear dependent solutions.

Furthermore, y(ω+ kπ) = ejνkπy(ω) or y(ω+ kπ) = e−jνkπy(ω), for the solution Fν(ω) or Fν(−ω),
respectively. We assume that the pair (a, q) is such that | cosh(jνπ)| < 1 so that the solution y(ω)

is bounded on the real axis [16]. The general solution of Mathieu’s equation (q ∈ R, ν non-integer)

has the form

y(ω) = c1e
jνωP (ω) + c2e

−jνωP (−ω), (5)

where c1 and c2 are arbitrary constants.

All bounded solutions —those of fractional as well as integral order— are described by an

infinite series of harmonic oscillations whose amplitudes decrease with increasing frequency. In the

wavelet framework we are basically concerned with even solutions of period 2π. In such cases there

exist recurrence relations among the coefficients [14]:

(a− 1− q)A1 − qA3 = 0,

(a−m2)Am − q(Am−2 +Am+2) = 0, m ≥ 3, m odd.
(6)

In the sequel, wavelets are denoted by ψ(t) and scaling functions by φ(t), with corresponding

spectra Ψ(ω) and Φ(ω), respectively.

3 Mathieu Wavelets

Wavelet analysis has matured rapidly over the past years and has been proved to be invaluable

for scientists and engineers [17]. Wavelet transforms have lately gained extensive applications in

an amazing number of areas [18]. The equation φ(t) =
√
2
∑

n∈Z hnφ(2t − n), which is known as

the dilation or refinement equation, is the chief relation determining a Multiresolution Analysis

(MRA) [19].

3.1 Two Scale Relation of Scaling Function and Wavelet

Defining the spectrum of the smoothing filter {hk} by H(ω) , 1√
2

∑

k∈Z hke
−jωk, the central

equations (in the frequency domain) of a Multiresolution analysis are [20]:

Φ(ω) = H
(ω

2

)

Φ
(ω

2

)

and Ψ(ω) = G
(ω

2

)

Φ
(ω

2

)

, (7)

where G(ω) , 1√
2

∑

k∈Z gke
−jωk, is the transfer function of the detail filter.

3



The orthogonality condition corresponds to [20]:

H(0) = 1 and H(π) = 0, (8a)

|H(ω)|2 + |H(ω + π)|2 = 1, (8b)

H(ω) = −e−jωG∗(ω + π). (8c)

3.2 Filters of a Mathieu MRA

The subtle liaison between Mathieu’s theory and wavelets was found by observing that the classical

relationship

Ψ(ω) = e−jω/2H∗
(ω

2
− π

)

Φ
(ω

2

)

(9)

presents a remarkable similarity to a Floquet’s solution of a Mathieu’s equation, since H(ω) is a

periodic function.

As a first attempt, the relationship between the wavelet spectrum and the scaling function was

put in the form:
Ψ(ω)

Φ
(

ω
2

) = e−jω/2H∗
(ω

2
− π

)

. (10)

Here, on the second member, neither ν is an integer nor H(·) has a period π. By an appropriate

scaling of this equation, we can rewrite it as

Ψ(4ω)

Φ(2ω)
= e−j2ωH∗(2ω − π). (11)

Defining a new function Y (ω) , Ψ(4ω)/Φ(2ω), we recognise that it has a nice interpretation in

the wavelet framework. First, we recall that Ψ(ω) = G
(

ω
2

)

Φ
(

ω
2

)

so that Ψ(2ω) = G(ω)Φ(ω).

Therefore the function related to Mathieu’s equation is exactly Y (ω) = G(2ω). Introducing a new

variable z, which is defined according to 2z , 2ω − π, it follows that −Y
(

z + π
2

)

= e−j2zH∗(2z).

The characteristic exponent can be adjusted to a particular value ν,

− e−j(ν−2)zY
(

z +
π

2

)

= e−jνzH∗(2z). (12)

Defining now P (−z) , H∗(2z) =
∑

k∈Z c2ke
jz2k, where c2k , 1√

2
h∗k, we figure out that the right-

side of the above equation represents a Floquet’s solution of some differential Mathieu equation.

The function P (·) is π-periodic verifying the initial condition P (0) = 1√
2

∑

k hk = 1, as expected.

The filter coefficients are all assumed to be real. Therefore, there exist a set of parameters (aG, qG)
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such that the auxiliary function

yν(z) , −e−j(ν−2)zYν

(

z +
π

2

)

(13)

is a solution of the following Mathieu equation:

d2yν
dz2

+ (aG − 2qG cos(2z))yν = 0, (14)

subject to yν(0) = −Y (π/2) = −G(π) = −1 and cos(πν)− yν(π) = 0, that is, yν(π) = (−1)ν .

In order to investigate a suitable solution of (14), boundary conditions are established for pre-

determined a, q. It turns out that when ν is zero or an integer, a belongs to the set of characteristic

values ar(q). Furthermore, ν = r is associated with ar(q). The even (2π-periodic) solution of such

an equation is given by:

yν(z) = −ceν(z, q)

ceν(0, q)
. (15)

The Yν(ω) function associated to yν(z) and related to the detail filter of a “Mathieu MRA” is thus:

Yν(ω) = Gν(2ω) = ej(ν−2)(ω−π

2
) ceν

(

ω − π
2 , q

)

ceν(0, q)
. (16)

Finally, the transfer function of the detail filter of a Mathieu wavelet is

Gν(ω) = ej(ν−2)(ω−π

2
) ceν

(

ω−π
2 , q

)

ceν(0, q)
. (17)

The characteristic exponent ν should be chosen so as to guarantee suitable initial conditions, i.e.,

Gν(0) = 0 and Gν(π) = 1, which are compatible with wavelet filter requirements. Therefore, ν must

be odd. It is interesting to remark that the magnitude of the above transfer function corresponds

exactly to the modulus of a elliptic sine [16]:

|Gν(ω)| =
∣

∣

∣
seν

(ω

2
,−q

)

/ ceν(0, q)
∣

∣

∣
. (18)

The solution for the smoothing filter H(·) can be found out via QMF conditions [19], yielding:

Hν(ω) = −e−jν ω

2

ceν
(

ω
2 , q

)

ceν(0, q)
. (19)

In this case, we find Hν(π) = 0 and

|Hν(ω)| =
∣

∣

∣
ceν

(ω

2
, q
)

/ ceν(0, q)
∣

∣

∣
. (20)

Given q, the even first-kind Mathieu function with characteristic exponent ν is given by ceν(ω, q) =
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(a) (b)

Figure 1: Magnitude of the transfer function for Mathieu multiresolution analysis filters: smoothing
filter |Hν(ω)| (solid line) and detail filter |Gν(ω)| (bold line) for a few Mathieu parameters. (a)
ν = 3, q = 3, a = 9.915506290452134; (b) ν = 5, q = 15, a = 31.957821252172874.

∑∞
l=0A2l+1 cos(2l + 1)ω, in which ceν(0, q) =

∑∞
l=0A2l+1. The G and H filter coefficients of a

Mathieu MRA can be expressed in terms of the values {A2l+1}l∈Z of the Mathieu function as:

hνl√
2
= −

A|2l−ν|/2

ceν(0, q)
and

gνl√
2
= (−1)l

A|2l+ν−2|/2

ceν(0, q)
. (21)

It is straightforward to show that hν−l = hνl+ν , ∀l > 0. The normalising conditions are
1√
2

∑∞
k=−∞ hνk = −1 and

∑∞
k=−∞(−1)khνk = 0.

4 Examples

Illustrative examples of filter transfer functions for a Mathieu MRA are shown in Fig. 1, for ν = 3

and 5, and a particular value of q (numerical solution obtained by 5-order Runge-Kutta method).

The value of a is adjusted to an eigenvalue in each case, leading to a periodic solution. Such

solutions present a number of ν zeroes in the interval |ω| < π. We observe lowpass behaviour

(for the filter H) and highpass behaviour (for the filter G), as expected. Mathieu wavelets can be

derived from the lowpass reconstruction filter by the cascade algorithm. Infinite Impulse Response

filters (IIR) should be applied since Mathieu wavelet has no compact support. However a Finite

Impulse Response (FIR) approximation can be generated by discarding negligible filter coefficients,

say less than 10−10. In Fig. 2, emerging pattern that progressively looks like the wavelet shape is

shown for some couple of parameter a and q. Waveforms were derived using the Matlab wavelet

toolbox. As with many wavelets there is no nice analytical formula for describing Mathieu wavelets.

5 Conclusions

A new and wide family of elliptic-cylindrical wavelets was introduced. It was shown that the transfer

functions of the corresponding multiresolution filters are related to Mathieu equation solutions. The
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Figure 2: FIR-Based Approximation of Mathieu Wavelets as the number of iteration increases (2,
4, and 6 iterations, respectively). Filter coefficients holding |h| < 10−10 were thrown away (19
retained coefficients per filter in both cases). (a) Mathieu Wavelet with ν = 3 and q = 3 and (b)
Mathieu Wavelet with ν = 5 and q = 15.
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magnitude of the detail and smoothing filters corresponds to first-kind Mathieu functions with odd

characteristic exponent. The number of zeroes of the highpass |G(ω)| and lowpass |H(ω)| filters
within the interval |ω| < π can be appropriately designed by choosing the characteristic exponent.

This seems to be the first connection found between Mathieu equations and wavelet theory. It opens

new perspectives on linking wavelets and solutions of other differential equations (e.g. Associated

Legendre functions).

Although there exist plenty of potential applications for Mathieu Wavelets, none are presented:

we just disseminate the major ideas, letting further research to be investigated. For instance, this

new family of wavelets could be an interesting tool for analysing optical fibres due to its “elliptical”

symmetry. They could as well be beneficial when examining molecular dynamics of charged particles

in electromagnetic traps such as Paul trap or the mirror trap for neutral particles [21,22].
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