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Increasing the Robustness of a Preconditioned
Filtered-X LMS Algorithm

Rufus Fraanje, Michel Verhaegen, and Niek Doelman

Abstract—This letter presents a robustification of the precon-
ditioned Filtered-X LMS algorithm proposed by Elliott et al.. The
method optimizes the average performance for probabilistic un-
certainty in the secondary path and relaxes the SPR condition for
global convergence. It also prevents large amplification in the pre-
conditioning filters due to secondary path zeros on and/or close to
the unit circle, which may yield overactuation in practical applica-
tions.

Index Terms—Acoustic noise, adaptive control, adaptive signal
processing, feedforward systems, robust filtering.

I. INTRODUCTION

THE Filtered-X LMS (FxLMS) algorithm is a very popular
algorithm for feedforward active noise and vibration con-

trol, because the implementation is simple and its recursions are
well studied (e.g., see [1]–[5], just to name a few). In broadband
applications the convergence rate of FxLMS may be poor due to
correlation in the regression vector. To overcome this problem,
[6], [7] proposes a preconditioning of the FxLMS (PFxLMS) al-
gorithm, which removes all correlation in the regression vector.
This can increase the convergence rate significantly as shown in
[8] for a realistic active control problem.

However, in [6]–[8] it was also noted that regularization is
necessary in case the system has zeros on and/or close to the
unit circle to reliably calculate the prefilters and prevent large
amplification of the preconditioning filters, which may yield
oversteering of, for example, the DA converters. An even more
important problem is, that undermodeling of and variations in
the secondary path may yield instability of the filter update al-
gorithm if a particular well known strictly positive real (SPR)
condition is not satisfied [2], [9].

The main focus of this letter is to adjust the PFxLMS algo-
rithm, without paying too much performance, such that the sta-
bility of the filter update algorithm is less sensitive to errors in
the secondary path model. Stated otherwise, our objective is to
increase the stability robustness of the PFxLMS update algo-
rithm w.r.t. model errors.
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In the literature, two approaches are proposed to improve
the robustness of the update algorithm: 1) online secondary
path modeling; and 2) adjusting the adaptive algorithm to relax
the SPR condition. Both approaches have their advantages and
drawbacks. Online secondary path modeling (e.g., see [4])
may keep track of variations in the secondary path and may
thus yield optimal performance even if the secondary path
varies. However, the computational complexity is increased
and injection of an auxiliary dither signal is usually necessary
with the consequence of reduced performance.

An example of the second approach, is proposed in [10]
where a model is derived which satisfies the SPR condition
for multiple secondary plant systems by solving the so-called
robust SPR problem. The method focuses on IIR filtering, but
can also be applied to FIR filtering. However, the set of multiple
secondary plant systems should satisfy a particular condition
for solving the robust SPR problem [10]. Furthermore, for
every secondary plant system a different precondition filter
would be necessary.

An alternative method which relaxes the SPR condition is
control effort weighting. In [5] and [6], this was done by tuning a
scalar parameter which weights the trace of the control effort co-
variance matrix, and results in Leakage FxLMS/PFxLMS. Be-
sides the necessity of tuning a scalar regularization parameter,
the method may be too conservative.

The contribution of this letter, is the derivation of the robust
versions of both FxLMS and PFxLMS in the framework of
probabilistic robust filtering proposed in [11]. The robust
method uses a model uncertainty model of the secondary path,
which acts as a frequency-dependent control effort weighting.
As such the method results in a generalization of standard
control effort weighting and hence a generalization of Leakage
FxLMS/PFxLMS (e.g., cf. [4] and [5]). It is shown that the
SPR condition is relaxed in a well motivated manner, and hence
the stability robustness of the update algorithm is increased.
A simulation example shows that this method yields better
performance than Leakage FxLMS/PFxLMS.

The letter is organized as follows. Section II derives the Ro-
bust FxLMS (RFxLMS) algorithm and its new SPR condition
for global convergence. Section III derives the Robust PFxLMS
(RPFxLMS) algorithm, shows that large amplification of the
precondition filter is prevented and derives the SPR condition
for RPFxLMS. Section IV illustrates the method by a simula-
tion example.

The notation is standard. and denote the transpose
and complex conjugate transpose, respectively. the expec-
tation operator, tr the trace and vec the column stacking
operator. The estimated model of is indicated by .
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Fig. 1. Block scheme of the general multichannel feedforward active control
system, with K reference,M control, and L residual signals.

II. ROBUST FILTERED-X LMS

Consider Fig. 1, which illustrates the feedforward active con-
trol problem (acoustical feedback is neglected or assumed to
be perfectly compensated by Internal Model Control). Here,

represents the signal from the disturbance source
and is assumed to be a zero mean white noise stochastic process
with , where ,

, . Let the set of all stable proper
rational transfer functions matrices in the unit delay op-
erator with real coefficients. Then the primary path, the de-
tector path and the secondary path are denoted by

, and , re-
spectively. The adaptive feedforward controller is an
matrix with FIR filters of length and its , th element is
given by

with . For ease of notation, we de-
fine ,

and
and the vector stacking of all controller coefficients

vec . The input to the adap-
tive filter is the reference signal , let

. Then the control signal is given by

The objective is to determine such that , coun-
teracts the disturbance signal . The measured residual
signal is corrupted with a zero mean stochastic noise process

, with intensity tr , which is in-
dependent of , i.e., , . The
measured residual is given by

Then, the FxLMS algorithm, which objective is to minimize
tr is given by

with denoting the Kronecker matrix product, the
step size. Using Ljung’s [12]ordinary differential equation
(ODE) method, [2] (see also [9]) shows that if suitably

vanishes, is persistently exciting and the following SPR
condition is satisfied:

(1)
then the associated ODE, which describes the asymptotic be-
havior of , is asymptotically stable. Hence, converges,
with probability one, to its unique global optimum [2]

To increase the robustness of the FxLMS algorithm w.r.t. un-
certainty in , we may want to have a (probabilistic) model of
the uncertainty. Here, we will follow the idea of the probabilistic
robust filtering approach proposed in [11]. We assume that
can be modeled as a stochastic variable, such that

with and
, for . de-

notes expectation over stochastic systems. Further, let be
independent of , , , and . The objective of
the robust filtering approach is to minimize

tr (2)

By Parseval’s equality and the independence between and
the other factors,

tr

tr

Here indicates complex conjugate transpose of the fol-

lowing factor, ,

and such that . Now, let
and be models of and

respectively and . Then the Robust
FxLMS (RFxLMS) algorithm is given by

We observe, that the RFxLMS algorithm is identical to the
FxLMS algorithm with the secondary path model augmented
by and the performance channels augmented by

. This additional term reduces the energy of the control
signal at frequencies where the uncertainty, i.e., ,
is large. The uncertainty model can be obtained from e.g.,
identification of ; see also [11], [13], and [14]. An other
approach is by performing a series of identification experiments
under different secondary path conditions which yields as
the average model and as a stable spectral factor of the
estimated covariance . In case with a
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constant real scalar, the RFxLMS algorithm can be reduced to
the Leakage FxLMS algorithm (e.g., cf. [4] and [5]).

To derive the SPR condition for the RFxLMS algorithm, we
have to rewrite the FxLMS SPR condition (1) for the augmented
system, which yields

(3)

Because, for
, the SPR condition is relaxed, especially at frequencies

where the magnitude of the uncertainty model is large.

III. ROBUST PRECONDITIONED FILTERED-X LMS

The robustness of the PFxLMS algorithm can be increased
too by minimizing the robust cost function (2). Like the pre-
conditioning filters for the FxLMS algorithm are factors of the
Causal Wiener filter (see [6] and [7]), the robust preconditioning
filters are factors of the robust Wiener filter -called the Cautious
Wiener filter in [11]—which minimizes (2) and is given by

with the causality operator, is the outer-inner fac-
torization of and is the inner-outer factor-
ization of . Note, that is a whitening filter for the ref-
erence signal and inverts the minimum phase part of
the augmented secondary path (if is nonsquare
denotes a right inverse).

Models of and can be used to precondition the
RFxLMS problem by removing the correlation in the regression
vector, which yields the RPFxLMS algorithm

RPFxLMS algorithm:
The control law is given by

u(n) = (Gaug
o (q�1))�1~u(n)

~u(n) =W (q�1; n)~x(n)

~x(n) = (Fo(q
�1))�1x(n)

and the update algorithm by

�(n+ 1) = �(n)

�(n) (Gaug

i
(q�1))T 
 ~�(n)

e(n)

G
aug

i2 (q�1)~u(n)
(4)

with ~�(n) is defined similar to �(n) but x(n) is replaced by ~x(n), and
�G(Gaug

o )�1 = G
aug

i2 equals the last L rows of Gaug

i
.

Note, that and thus the gain
of will be reduced where , which may
prevent oversteering of, for example, the DA converters.

Assuming , which is such that
, it can be proven that the autocorrelation matrix of

the regression vector

equals the identity matrix . Therefore, under this condition
all modes converge at the same rate, which is determined by the
step size .

Using the ordinary differential equation (ODE) method as in
[2] the following theorem on the convergence of RPFxLMS is
obtained.

Theorem 1 (Convergence RPFxLMS): If suitably van-
ishes, is persistently exciting, the regularity conditions of
the ODE theorem [12] are satisfied and the following SPR con-
dition holds:

for (5)

Then the associated ODE, which describes the asymptotic be-
havior of , is asymptotically stable. Furthermore, con-
verges, with probability one, to its unique global optimum

Proof: The proof is along the same lines as in [2], but with
augmented secondary path and precondition filters.

The SPR condition (5) for RPFxLMS is a weighted version
of the SPR condition (3) for RFxLMS, with weighting function

. If is square and full rank (which is usu-
ally the case), then the SPR condition for RPFxLMS (5) can be
simplified further to the SPR condition of RFxLMS (3). In the
case is tall (i.e., if has more columns than rows),
(5) is less strict than (3). Hence, if RFxLMS converges then
RPFxLMS converges, provided the step size is small enough.

Uncertainty in the detector path can be taken into account
similar. But, instead of augmenting the performance channels
to deal with uncertainty in , the reference channels has to be
augmented with an additional noise signal uncorrelated with

and (cf. [15]). Furthermore, the same robustification
method can be used in the Adjoint FxLMS algorithms as in [6]
and [7].

IV. SIMULATION EXAMPLE

The RPFxLMS algorithm is tested on a one-dimensional
acoustical duct simulation model, discretized using a sampling
rate of 1 10 Hz. The delay in the secondary path model has
been varied, from 0 to 4 10 s additional delay. Depending
on the amount of additional delay the SPR condition (1)
does not hold anymore, especially for high frequencies. The
RPFxLMS algorithm has been applied for various choices of

: 1) , i.e., the nominal case; 2) ,
which is such that (5) just holds for a delay of 1 10 s; 3)

, which is such that (5) just holds for a delay
of 2 10 s; and finally 4) estimated via the covariance of
the model error due to a delay uniformly distributed from
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Fig. 2. Reduction of RPFxLMS after 160 s obtained for various choices of
�G, versus additional delay in G.

0 to 2 10 s. In all experiments, the normalized step size is
chosen to be 0.1, the number of filter coefficients and
the measurement noise is absent .

Fig. 2 shows the reduction after 160 s (if the algorithm
converges it is usually converged after 30 s, but 160 s has
been chosen to fully guarantee the algorithm is converged). The
nominal case (marked with ) yields best performance be-
tween 0–0.3 10 s, however the adaptive algorithm diverges
for larger delays. Using scalar regularization (marked with
and ), the robustness can be improved, but at the expense of
significant performance. By estimating the uncertainty model

via the covariance with delay uniformly distributed
between 0 and 2 10 s (marked with ), the robustness of the
update algorithm is increased significantly without paying too
much performance.

V. CONCLUSION

The robustness of the preconditioned FxLMS algorithm, pro-
posed by Elliott et al. is increased by following a probabilistic
robust filtering method. The SPR condition is relaxed by taking

the model uncertainty in the secondary path model explicitly
into account. Furthermore, the gain of the precondition filter is
reduced, which may prevent oversteering problems.
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