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Abstract—This letter proposes a new method for designing fi-
nite-impulse response (FIR) filters with variable characteristics.
The impulse response of the variable digital filter (VDF) is pa-
rameterized as a linear combination of functions in the spectral
or tuning parameters. Using the least square objective function,
the optimal solution is obtained by solving a system of linear equa-
tions. Design results show that this method is simple and effective in
designing FIR VDF with good frequency characteristics. Further-
more, by using piecewise polynomial, instead of ordinary polyno-
mial, more complicated frequency characteristics, or larger tuning
range can be approximated.

Index Terms—Finite-impulse response (FIR) filters, least
squares design, piecewise polynomial approximation, variable
digital filter.

1. INTRODUCTION

ARTABLE digital filters (VDFs) are digital filters with con-
trollable spectral characteristics such as variable cutoff fre-
quency response, adjustable passband width, controllable frac-
tional delay, etc. They found applications in different areas of
signal processing and communications, e.g., fractional delay dig-
ital filters for timing adjustment in digital receivers. Methods for
designing variable digital filters can broadly be classified into
two categories: transformation [1], [2], and spectral parameter
approximation [4]—[6], [§]-[10] methods. In the former, a proto-
type filter with certain desirable frequency characteristics is first
designed. Certain transformation such as the allpass transforma-
tion method [3] is then applied to the prototype filter to obtain
the final VDF. In general, transformation method is applicable
to VDF with variable cutoff frequencies, but not general variable
characteristics say variable fractional delay. The spectral param-
eter approximation method is more general in that it assumes that
either the impulse responses [4] or the poles and zeros [7], [9] of
the filters are polynomials of certain spectral parameters. The co-
efficients of the polynomials are then determined to provide con-
tinuous tuning of the VDF by the spectral parameters. The spec-
tral parameter method was proposed by Zarour and Fahmy [7],
where the poles and zeros of an infinite-impulse response (IIR)
filter are assumed to be polynomials of the spectral or tuning pa-
rameters. Most of the works on VDF reported are focused on the
design of IIR VDF (see [4] and [9] and references therein), and
methods for guaranteeing their stability [9]. More recently, the
design of one-dimensional [9] and two-dimensional (2-D) [5],
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[10] FIR VDF (by parameterizing the impulse response as poly-
nomials) have received considerably attention due to their simple
design procedure and good filter performance. Also, the close link
between the Farrow-based fractional delay digital filter and such
FIR VDF becomes more apparent [5]. This letter generalizes this
concept by using a linear combination of basis functions, which
can be more general functions than just polynomials. It is shown
that the optimal LS solution can also be obtained by solving a
system of linear equations. This differs from the weighted least
squares approach in [9] and [10] in that 1) no discretization of the
tuning and frequency variables are used, which helps to reduce
the design complexity by means of closed-form formulas; 2) the
approximation function is assumed to be a linear combination of
basis functions. Without loss of generality, a tunable filter using a
piecewise polynomial is used as an example. Design results show
the LS formulation yields tunable FIR VDF with good frequency
characteristics and the piecewise polynomial-based VDF offers
larger tuning range than ordinary polynomial-based approach.
This letter is organized as follows. In Section II, the proposed
least squares design method is described. Two design examples
are then given in Section III. Conclusions of this work are drawn
in Section I'V.

II. PROPOSED LS DESIGN METHOD

The impulse response of the variable FIR filter under consid-
eration h(n, ®) is assumed to be a linear combination of some
functions v, (®) of the spectral parameters ®, i.e.,

M-1

h(n,®) = > cnmtm(®) e

m=0

where ¢, is the coefficient of expansion. The functions
1m (®) can be chosen as an orthonormal basis or other func-
tions, depending on the application at hand. Our objective is to
determine c,,, ,, given 1,,, (®) so that the frequency response of
h(n,®) will approximate some desirable variable frequency
response as a function of ®, the tuning parameter vector (e.g.,
delay, etc.). First of all, let us consider the z-transform of the
VDF as follows

N—-1M-1

N-1
H(z,®)= Z h(n,®)z""= Z Z CnmPm (®)27". (2)
n=0

n=0 m=0

Interchanging the order of summation, (2) can be rewritten as

M—-1[N-1 M-=1
H(z,®)=)" [Z Cnm 2" | P ()= D Con(2) - P (®@).
m=0 Ln=0 m=0
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This suggests the general structure for its implementation as
shown in Fig. 1. It can also be viewed as a generalization of the
Farrow structure for implementing fractional delay digital filter
where h(n,¢) is approximated by a polynomial in the delay
parameter ® = ¢, i.e., P, () = ¢™. If H(e?*, ®) is the
desired frequency response, the approximation error is
M-1N-1
Z Z Cn,m I/Jm
m=0 n=0

It can be seen that E(w, ®) is a linear function of the expan-
sion coefficients ¢, ,,. The error cost function of E(w, ®) will
therefore be a quadratic function of ¢, ,, which has a unique
minimum characterized by a system of linear equation. More
precisely, the error cost function of E(w, ®) is given by

®) ://W(ej“,(b)-|E(w,<I>)|2dwd<I>

D505

= //W(ej“,é)

D505

E(w,®) = Hi(e™, ®) - )e ™I (4)

2

M—-1N-—
|Hp(e?, ®)— Z Z Cnom P (®)e ™I | dwd®

)

where W (&7, ®) is a positive weighting function used to con-
trol the amount of approximation error in the frequency and the
tuning space. The set {2 is the frequency support over which
Hi(e?“, ®) is to be approximated. For example, it can be the
passband and stopband ripples of a variable cutoff digital filter.
Similarly, the set ® g is the parameter space over which the spec-
tral parameter vector ® is to be varied. To simplify notation, let-
ting/ = n + Nm and z = ¢/* in (2), one gets

' M-1N-1 . NM-1
H(e™, @)=Y " Y cpmthm(®)e™ ™= > aidi(w,®)
m=0 n=0 1—0

(6)
where a; = cpm wWithl = n + Nm and ¢)(w,®) =

P (®)e ™7™« Substituting (5) into (4) and simplifying gives

E=a"Qa-2b"a+c (7
where
a:[ag a1 aNM_l]T
=Mbo b1 - byar—1]”
@i = W (e, ®) - ¢i(w, ‘I’)(ﬁ] (w, ®)-dwd®
]
[b]l - / / W(ej“’, é) -Re {Hj(ej“’, ¢)¢l(w; <I>)} d®dw

®s Qs

and

c= / /W(ej“,i)) . |HI(ej“,<I))|2dwd<I>.
&5 Qs
Differentiating (7) with respect to @ and setting the derivatives

to zero, one gets the following system of linear equation and the
optimal LS solution, arg

Qus=b as=Q b )

x(n)
Cy(2) Ci(2) Cyal(2)
¥o(P) v, (P) ¥ (P)
>y y(n)
Fig. 1. General structure for implementing the proposed variable FIR digital

filter.

As an illustration, let us consider the design of a lowpass FIR
filter with variable cutoff frequency. The passband cutoff fre-
quencies w,, and the stopband cutoff frequency w, are assumed
to vary linearly with @ = ¢ as shown in the following:

wp(¢) = d) : (wp2 - wpl) + Wp1
ws(¢) :(z)'(w.s? _wsl)+wsl {(DS : §b € [071]}

Therefore, the frequency support of the filter and the desired
response are respectively

Qs =000, Q= {w:we 0},
Qs ={w:w e (ws(p),m)} (10)
and
jo v eI w] < w, ()
Hi(e’,¢) = {o, o) <ol <n D

where 7 is the group delay which is a constant. If h(n, ¢) is
approximated by a polynomial, then the function ,,,(¢) is just
¢™. Putting the weighting function

. K, wels
jw _ p P
Wie ’q))_{Ks we S,

into (7), one gets

1
Qli; = / Pt / Kped (0w dy, 4 / K, 8w dy| de
0 2,
1 [ wp(#)
_ / gi+m / 2K, cos (n—Fk)w) - dw
0 0

™

+ / 2K, cos((n—Fk)w) -w| dp

Ws (¢)
1

=2 / P K psine ((n—k)w,(¢))
+ K {sinc ((n—k)m)

—sinc(n—k)

ws(¢))Hdp  (12)
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Fig. 2. Frequency response of VDF in Example 1 (a) at ten equally spaced
values of ¢. (b) Three-dimensional plot of the variable digital lowpass filter.

and

[b], = /1 g™ / KyRe {/ 7} | dg
0

=28, [ 4"y (@sine (0= )y (@)ds (13

where? = k + Nl,and j = n + Nm.Equations (12) and (13)
can readily be calculated by the reduction formula or in general
numerical integration. The optimal weighted least square solution
can then be calculated from (8). The design of other variable dig-
ital filters such as variable bandpass filters and 2-D VDFs can be
derived similarly. We now consider some design examples.

III. DESIGN EXAMPLES

Example 1: A lowpass tunable filter with frequency charac-
teristics governed by (9) to (10) is designed with the following
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Fig. 3. Two-dimensional contour plot of the variable lowpass filter. (a)
Example 1. (b) Example 2. The bar on the right shows the mapping between
the grayscale and the stopband attenuation in decibels.

specification: filter length N = 32; number of FIR subfilters
M = 6 (polynomial order is 5); tuning range: w,> = 0.4,
wp1 = 0.2, wsa = 0.6m, ws1 = 0.4m. This is identical to the
variable multiplierless tunable lowpass filter considered in [5],
for the sake of comparison. Fig. 2(a) and (b) show, respectively,
the frequency responses at ten equally spaced points of ¢ be-
tween 0 and 1 and its three-dimensional plot as a function of ¢
and w. Its 2-D contour plot is shown in Fig. 3(a). It can be seen
that although the tunable range is rather large, the overall stop-
band attenuation is still very high over the entire tuning range.
The worst case stopband attenuation of this filter is 42.885 dB,
which is roughly equal to 43.03 dB that was obtained in [5].
The latter is obtained by designing a large numbers of FIR fil-
ters at a dense grid of ¢ using the Remez exchange algorithm
and a minimax criterion. The coefficients ¢, , of the polyno-
mials are then obtained by interpolating h(n, ¢) followed by a
random search for their canonical signed digit (CSD) represen-
tation. At higher frequencies, the stopband attenuation of the
proposed LS tunable filter rolls off more quickly due to the use
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of the least squares objective function. This demonstrates the
usefulness of the proposed approach and its simple design using
the closed-form formula.

Example 2: In this example, we are going to extend the
tuning range of example 1 to wys = 0.6m, wy; = 0.4,
weo = 0.87, ws; = 0.67 by treating h(n,$) as a piecewise
polynomial. More precisely, h(n,¢) is approximated by the
structure obtained in example 1 in the range wp» = 0.4m,
wp1 = 0.27, wea = 0.67, ws1 = 0.4 when ¢ varies from 0 to
1. h(n, ¢) in the extended tuning range is approximated by an-
other polynomial when ¢ varies from 1 to 2. Only one of these
two structures will be active at the same time, depending on
the tuning range. For simplicity, we do not impose smoothing
constraints between this piecewise polynomial. In other words,
they can be designed separately using the proposed method
in Section II. Fig. 3(b) shows the VDF in the extended tuning
range, which demonstrates the usefulness of the piecewise
polynomial approach in extending the tuning range of the VDF.

IV. CONCLUSION

A new method for designing FIR filters with variable charac-
teristics is presented. It parameterizes the impulse response of
the variable digital filter as a linear combination of functions in
the spectral or tuning parameters. This allows closed-form op-
timal least squares solution to be obtained by solving a system
of linear equations. Design results show the LS formulation
yields tunable FIR VDF with good frequency characteristics and

the piecewise polynomial-based VDF offers larger tuning range
than ordinary polynomial-based approach.
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