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A Memory-Efficient and High-Speed Sine/Cosine
Generator Based on Parallel CORDIC Rotations

Shen-Fu Hsiao, Member, IEEE, Yu-Hen Hu, Fellow, IEEE, and Tso-Bing Juang, Member, IEEE

Abstract—The sine/cosine function generator is based on paral-
lelization of the original CORDIC algorithm by predicting all the
rotation directions directly from the binary bits of the initial input
angle. Unlike previous approaches that require complicated cir-
cuits or exponentially increased ROM, our proposed architecture
has a relatively simple prediction scheme through an efficient angle
recoding. The critical path delay is also reduced by utilizing the
predicted rotation directions to design an efficient multioperand
carry-save addition structure.

Index Terms—CORDIC, microrotation angle recoding, multi-
operand carry-save addition, parallel sign prediction, sine/cosine
function generator.

I. INTRODUCTION

NE OF THE key components in direct digital frequency

synthesizer (DDFS) system [1] is the sine/cosine func-
tion generator that computes binary representation of sin  and
cosf to a precision of N fractional bits is. In this letter, we
propose a novel realization of a sine/cosine generator based
on the CORDIC algorithm [2]. CORDIC is an arithmetic al-
gorithm developed to compute various elementary functions
through a series of iterations of a unified microrotations oper-
ation. In particular, in a circular rotation mode, N microopera-
tions as illustrated below will be executed forz = 1,2,---, N

Tiy1 = x; + Cfi2_:if‘/i

Yitl = Yi — 052 'T;

Zi41l = Zi — 04 tan_l(Z_i) ’
=Z; — 0;04

o; = sign(z;) € {1,—1}.

ey

After N iterations, the accumulated rotation angle is

N N
0=z — ZN41 = ZO}; tan_l(Z_i) = ZO};O&,‘,.
i=1

i=1

Using the definition of «;, one has (note that cos o;a; = cos a;)

Tiy1 | 1 . O'iQ_i x;
Yip1 | | —0i27" 1 Yi
coso;o;  Sino;o; T;
coso;a; | |y |

1
COS (x; | —SINO;0
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Then, it can be easily deduced that
zns1| 1 | cosf sinf | |z
[yN_H} T K [—SinH COSH:| [yl}

where K =[], cos oy =[]0, (1 + 272)~1/2 is a constant
that can be precomputed in advance. Set z; = K, y; = 0,
z1 = 0, then xy4+1 = cosf, yy+1 = sinf can be easily com-
puted after [V iterations. In conventional CORDIC, the direction
o; = sign(z;) is determined sequentially since it depends on the
sign of z; calculated at the previous iteration. This dependence
relation makes it difficult to execute multiple microrotations in

parallel. In this letter, we propose a new method to quickly select
the rotation directions {c;} in order to speed up the calculation.

II. PREDICTIONS OF ROTATION DIRECTIONS

A. Binary to Bipolar Recoding (BBR)

The initial input angle § = (—fo) + Y./_, 6;277 with
6; € {0,1} is assumed to be in the range |#| < /4
as in the application example of DDFS. It has been
shown in [3] that tan='2~% = 27% to N-bit precision if
i > m = [(N — log,3)/3]. Thus, the last 2N/3 rotation
directions (from o, to on) can be obtained in parallel after
completing the first N/3 iterations. As proposed in [3], we
divide the angle into two parts (the higher part and the lower
part)

m—1 N
0=0u+0L=(—0)+ > 0;27+> 0,277, (2
j=1 j=m
On or
The binary bits #; € {0, 1} in the higher part § 7 can be recoded
into bipolar digits as follows:

m—1

O =(—60) + »_ 6;277

<.
=

3

=(—6p)+ > [277 1+ (20, —1)2771]

Il
—

7

=(—0p) + 271 4 Z’I‘k2_k —2™m
k=2
where r, = (20, — 1) € {1,—1}. 3

Equation (3) is called BBR for §;, 7 = 0,1,...,m — 1.
B. Microrotation Angle Recoding (MAR)

Since tan~1(27%) # 27 fori = 1,---,m — 1, we decom-
pose each positional binary weighting 27%, 4 = 1,---,m —
1 into the combination of significant tan=1(277) terms plus
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an error term e; collecting all the other insignificant values of
tan_1(2*j), 7 > m. For simplicity, we take N = 24 as an ex-
ample where m = [(IN — log, 3)/3] = 8. The microrotation
angle recoding from 27% to tan=%(27%),i = 1,---, T is

27 =tan=!1 (27 +tan"(27°) +tan "1 (27)
+0.000 000000 100 111 100 001 110,

€1
2 2=tan }(272)+tan }(27%)
4-0.000 000 000 100 100 100 010 100,

ez
273 =tan"!(273)40.000 000 000 010 101 001 000 101,

€3

2~* =tan~"(27%)40.000 000 000 000 010 101 010 010

-~

€4

27% =tan™1(27°)4-0.000 000 000 000 000 010 101 010,

g

276 =tan"1(27%)40.000 000 000 000 000 000 010 101,

€6

2= =tan"'(2-7)40.000 000 000 000 000 000 000 010 . (4)

er

The BBR for g with N = 24 is

8
O = (1—200)27" +> m27F - 275 5)
k=2

The first eight rotation directions are selected concurrently as

g1 = (1 - 290)
op =1k = (201 —1), k=2,---8 (6)
Then, all the signed error terms o;e;,7 = 1,...,7 and the last

term —2~8 in (5) are added to ., generating the corrected lower
part 61, represented in twos complement format, i.e.,

7
éL :9L+Z 0;€; — 28
=1

24
=(=02)27"+) 027k, b€ {0,1}, k=8.....24. ()
k=8

It can be shown that |7 < 277, Since tan™" 2% = 2¢,
1 > 8 within precision of 24 fractional bits, the algorithm con-
verges after the above selection of directions for the first several
rotations. The directions for the remaining microrotations can
be derived immediately from (7) using again the BBR

24
éL = (—97)277 + Z ék27k
k=8
25
=(=02)27T+> (201 —1)27F 275 — 27
k=9
25
=(1-207)27% + kaz—k — 272
k=9

i = (20, — 1) € {1, 1} ®)
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leading to the parallel prediction
65 = (1 —26;)
6r = = (20, — 1),

for the last 2N /3 microrotations.

k=9,---,25

III. IMPLEMENTATION AND COMPARISON

Fig. 1(a) is a 24-bit sine/cosine generator based on unfolded
CORDIC architecture where each numbered block (a stage) de-
notes a microrotation performing the recurrence of z and y in
(1). Note that the microrotation of angle tan=!(27?) is repeated
once and the microrotation of angle tan=!(27%) is repeated
three times. The scaling factor is still kept constant by taking
into account these fixed repetitions

N 1

K =J[a+27%)"

=1

_3
2

_1
x (14271972 x (14 2716)

This constant can be precomputed and serves as one of the initial
inputs z; = K', 9, = 0, 21 = 6.

Since the first m bits of the input angle are directly used as
the directions in the first m rotations, the execution of stages
1-12 (including repetition stages) in the left of Fig. 1(a) can
be performed in parallel with the prediction adder that gener-
ates the directions for the remaining microrotations. We adopt
carry—save addition (CSA) in each stage where a 4:2 com-
pressor is used to produce the carry—save form (a sum term plus
a carry term) for each output, as shown in Fig. 1(b). Assuming
the delay of a4 : 2 compressor to be 2T where Ty is the delay
of a full adder, the delay for the stages in the left of Fig. 1(a) is
20Twa. Note that the first stage does not need CSA. The pre-
diction adder is to calculate the sum of the nine operands in
(7), using a CSA tree and a fast carry-propagate adder (CPA),
leading to a delay of 47rs + Tcpa Where Tcpa denotes the
delay of a CPA. In general, the prediction adder is not in the
critical path as long as a fast CPA is used.

The derivation in Section II can be easily extended to different
bit precision N where the total number of repetitions {(/N) can
be found to be I(16) = 2, 1(24) = 4, [(32) = 7. In some
application (such as the DDFS) where the input angle is further
limited in 0 < # < /4, the first rotation direction is always
o1 = 1, and thus the first several stages controlled by o; can
be merged and precomputed along with the constant factor K’
as the initial input to the X/Y datapath. In this situation, the
numbers of repetitions in the sine/cosine generation are reduced
to I(16) = 1,1(24) = 2,1(32) = 4.

The second half of microrotation stages can be merged into a
multioperand carry—save addition architecture by observing that

k-1 ,
Tppr =Tp+ye », 127" N
i—k
bl k> I=12
Ykl = Yk — T », 1i27°
1=k

Thus, the microrotation stages numbered from 13-25 in
Fig. 1(a) can be merged into a CSA tree performing the parallel
addition of 28 operands (14 numbers in carry—save forms)
with critical path delay 7Tra + Tcpa. Summing up the delay
of all the stages, the total delay of our proposed sine/cosine
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Fig. 1. (a) Architecture of a 24-bit sine/cosine generator based on parallel CORDIC rotations and (b) the carry—save addition implementation in a stage.

generator is 371ra + Tcpa for 24-bit accuracy, a significant
speed improvement compared with other previous approaches
as will be discussed in the following.

Table I compares our proposed sine/cosine generator with
other CORDIC rotation algorithms. To make a fair comparison,
we assume that all methods use CSA in X/Y datapath except
for the last stage where a fast CPA is required to obtain the
nonredundant representation of the output (7Tcpy is not counted
in Table I for reason of clarity). In [3], the rotation directions
after m iterations are derived from the z remainder. However,
the first m iterations still adopt the conventional sequential ap-
proach where a delay of [log, N x T is assumed for an N -bit

CPA. In [4], two rotations are executed in a single step at the
price of more complicated Z datapath where several most signif-
icant digits are examined. In [5], the first m rotation directions
are predicted based on approximation of binary angle input to
tan—! 27% similar to our method. But the direction prediction
requires several carry-look-ahead adders plus complicated logic
circuits instead of directly from the binary bits of the input angle
as in our method. In [6], the first several directions are derived
using a ROM of size exponentially increased with /N. Unlike
these above methods that require some delay to predict the first
m rotation directions, our proposed method generates the first
m rotation directions immediately from the first m binary bits of
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TABLE 1
COMPARISON OF N -BIT CORDIC-BASED SINE/COSINE GENERATORS WITH DIFFERENT PREDICTION SCHEMES
method | Delay (in units of 7,.,) | Delay Delay Delay |Z-path | ROM | Prediction
(N=16) | (N=24) |(N=32) hardware
ours (N+21(N)+|'10g],2(£\2’-)‘1‘2) 24TFA 37TFA SITFA no no simple
[3] (log, N|xN/3+4N/3) 43T, 72T, 96T, | yes | no simple
[4] SN/2 40T, 60T, 80T, yes no complex
[5] (N +[(log, N)-2Dx2 34T, 507, 687, no no complex
[6] (1.625N + N/12+log, N+1) | 33T, 47T, 617, no 2% | simple

the input angle. As of area comparison, our proposed ROM-free
CSA architecture also requires less hardware complexity com-
pared with the other methods mentioned above.

A 16-bit CORDIC-based sin/cosine generator similar to
the architecture in Fig. 1 was synthesized and mapped on the
Virtex-300 type FPGA chip. The critical path delay across
the entire architecture is less than 75 ns. Compared with the
approach in [3], our design achieves more than 25% improve-
ment in speed performance (due to the parallelization of the
sign bit selection), and 30% saving in hardware cost (due to
the elimination of the Z datapath). Another comparison is
made for the ROM-based approach in [6] that calls for 47
configurable logic blocks (CLBs) for the polarity prediction,
our proposed sin/cosine generator, with only 28 CLBs for the
sign-bit determination, saves more than 40% hardware cost in
the prediction of rotation directions.

IV. CONCLUSION

We presented a novel recoding method to predict all the di-
rections of CORDIC microrotations and apply it to the gener-

ation of sine and cosine functions. The proposed architecture
does not need exponentially increased ROM or complicated pre-
diction hardware. The speed is also improved by implementing
the microrotation stages using carry—save addition with reduced
number of operands.
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