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Least Mean-Phase Adaptive Filters With Application
to Communications Systems

Alireza Tarighat, Student Member, IEEE, and Ali H. Sayed, Fellow, IEEE

Abstract—The mean-squared-error criterion is widely used in
the literature. However, there are applications where the squared-
error is not the primary parameter affecting the performance of
a system. In many communication systems, for instance, the infor-
mation bits are carried over the phase of the transmitted signal.
In this letter, we introduce a cost function that is based on both the
error magnitude and the phase error. The criterion is useful for ap-
plications where the performance depends primarily on the phase
of the estimated (recovered) signal. An adaptive filter is then devel-
oped using the proposed criterion with essentially the same com-
plexity as the standard least mean squared (LMS) algorithm. The
filter outperforms LMS specially in situations with fast channel
variations. Bit error rate (BER) simulations for two communica-
tion systems using the proposed algorithm support the claims.

Index Terms—Adaptive channel estimation, adaptive filtering,
phase error minimization.

1. INTRODUCTION

HE MEAN-squared-error criterion is widely used in linear

estimation theory and adaptive filtering [1], and it has been
applied successfully in many different contexts [1], [2]. How-
ever, the criterion is only a function of the error magnitude, and
it does not depend on the phase error. In many communications
systems, the parameter affecting the performance is primarily
the error in phase. For instance, M-PSK and QPSK modulation
schemes carry the information in the phase of the transmitted
signal [2]. Therefore, performance degradation in PSK, QPSK,
and even QAM systems is mostly due to the error in the phase
of the estimated signal rather than in the magnitude of the error.
In such systems, a symbol error occurs whenever the error in the
phase of the estimated signal is more than a threshold value, de-
pending on the constellation. For such applications, we propose
a criterion that involves both the estimated phase error and the
magnitude of the error. An adaptive filter is developed based on
this criterion and simulation results indicate its superior perfor-
mance over a standard LMS implementation. The improvement
is more significant when the adaptive filter is required to track
fast channel variations, since the proposed structure can at least
track the channel phase variations, even if it fails to properly
track the channel magnitude variations.

Manuscript received March 27, 2003; revised May 22, 2003. This work was
supported by the National Science Foundation under Grant CCR-0208573. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Mounir Ghogho.

The authors are with the Department of Electrical Engineering, University
of California, Los Angeles, CA 90095 USA (e-mail: tarighat@ee.ucla.edu;
sayed @ee.ucla.edu).

Digital Object Identifier 10.1109/LSP.2003.821732

II. PROBLEM FORMULATION

Let d and u be zero-mean random variables, with d being
a scaler and u a 1 x M vector. Introduce the phase-error cost
function

Jpe(w) = E |phase(d) — phase(uw)|™
=E|Zd — Luw|™ (1
where m = 1, 2 is discussed in this letter, and w is an unknown
weight vector to be estimated. Moreover, the letter £/ denotes

expectation. Consider further the well-known squared-error cost
function

Jeo(w) = E|d — uw|? 2)
and introduce the weighted cost function
J(W) = klt]se(w) + kQJpe(W) (3)

where k1 and ko define the contribution of each term to the
overall cost function. The proper choices of k1 and ko depend
on the application and the environment in which the adaptive
filter is being used. For instance, setting ko = 0 leads us to the
standard LMS algorithm. The proper ratio between k1 and ko
for the scenarios presented in this letter is discussed later. Our
goal is to develop an adaptive filter to minimize .J(w).

III. STOCHASTIC GRADIENT DERIVATION

The update equation for a steepest-descent implementation is
given by
w; = W,_1 — pu[VwJ(wiz1)]", i>0 4)

where V., is the complex gradient of .J(w) with respect to w.
The gradient of Js.(w) is given by

Vwse(w) = —E(u*d — u*uw)” 5)

while the gradient of Jp,.(w) is given by (for m = 1)

Vwdpe(W) = —E [sign(Zd — Zuw) x Vi (Zuw)]  (6)
where

Vw(Zuw)

=Vw (arctan M + 7r)
Re(uw)
Vw [Im(uw)] Re(uw) — Im(uw)Vy, [Re(uw)]

- (7
[im(uw)]? + [Re(uw)] @
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Using the following relations

[(uw)+(uw)*] [(uw) —(uw)*]

Re(uw)= Im(uw) = : 8)
2 27
(7) becomes
2Re(uw) — S Im(uw
Vw(luw) = 2 (uw) — gTm(uw)
[uw?
_ J(uw)”
2 juw]? ©
Substituting into (6) gives
] 1
Vwdpe(W) =E <%sign(£d — Zuw)au> . (10)

Using instantaneous approximations leads to the adaptive im-
plementation

w; = wi_1 + 1 (d(7) — ww,—1) u;”

Ju*
(uiw;_1)*
where p; and o are step-size parameters. Similarly, we can
show that for m = 2 in the phase-error cost function (1), the
adaptive update equation will become

+pssign (£d(i) — Zu;w; 1) (11)

w; = W1+ pq (d(i) — wyw_q) w”

Ju”
(u;w,_q)*
We will refer to the adaptive algorithm defined by (12) as the
joint least-mean-phase least-mean-squares algorithm or simply
LMP-LMS. Similarly the algorithm defined by (11) will be re-
ferred to as sign-LMP-LMS. Note that both algorithms collapse
to the standard least-mean-squares algorithm (LMS) by setting
2 = 0. By properly choosing the step-size parameters p; and
12, we can control the relative weight of the squared-error and
phase-error terms in the overall update direction.

+ 2 (Zd(L) — Auiwi,l) (12)

A. Geometric Interpretation

The a priori and a posteriori-based estimates of d(4) are de-
fined by d(i|i — 1) = u;w;_1 and d(i|¢) = u;w;. Introduce the
following metric as the improvement in the estimate for d(7):

Ad =d(i|i) — d(ili — 1)

=w(w; —w; 1) (13)
Using the update (12), the above metric evaluates to
Ad = py ||Jui]|? (d(3) — uywi_y)
2. , J
ol Psign (£d(i) — Lugwi ) s (14

Now consider a communications system with PSK modula-
tion. In such a system, an error in the phase estimate is the only
source for symbol error, and we will show how the term due
to the phase error in the update (12) can improve the symbol
estimates. To show this, an 8-PSK constellation is illustrated
in Fig. 1. This figure separately depicts the direction of the
improvement in d(i|i) given by (14) due to the squared-error
and phase-error terms. Fig. 1(a) depicts the first term (squared-
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squared-error t/erm
- Ad
d(tll — 1) = uw;_1 ///

s desired signal
e d; i

) ALQ

phase—error/term
(i(’tlt - 1) = u;w;_1 /Ad

%

desired signal

(b)

Fig. 1. Direction of the improvement in Ci(l|l ) given the new estimate w, as
defined by (13). (a) Correction due to the squared-error term. (b) Correction due
to the phase-error term.

error term) in (14), which is along the (d(i) — w;w;_1) di-
rection. Fig. 1(b) shows the improvement in d(i|¢) given by
(14) due to the phase-error term. It can be verified that the
term j/(u;w;_1)* has a direction perpendicular to the vector
u;Ww;_1, as shown in the figure. Therefore, this term corrects
the error in the phase of the estimated signal, by rotating the es-
timated signal toward the true signal. Since an error in phase is
the only source for a symbol error, a weighted combination of
these two terms can lead to a lower symbol error rate. The rel-
ative effect of them can be controlled by the ratio between 111
and pis.

Throughout the simulations, we realized that the phase-error
term in the LMP-LMS algorithm enhances the filter ability to
track fast channel variations (by that we mean phase variations).
This term helps the filter track phase variations even if it cannot
track magnitude variations fast enough. Overall, this results in a
lower symbol error rate in fast fading wireless channels. Note
that the LMS algorithm alone has a limited tracking perfor-
mance [3], and the step-size parameter ;41 cannot be chosen un-
boundedly large in order to track fast channel variations, since
it will make the filter unstable. For such a scenario, the phase-
error term enhances the phase tracking performance of the filter
(and, consequently, the symbol-error-rate), without sacrificing
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Fig. 2. Two simulated systems. (a) Adaptive antenna diversity combiner.
(b) Adaptive CDMA Rake receiver.

the stability of the filter. The proposed LMP-LMS filters out-
perform the standard LMS filter in phase sensitive scenarios,
but they are not significantly superior when the filter is used for
interference cancellation.

IV. SIMULATION RESULTS

The proposed LMP-LMS algorithm is applied to two dif-
ferent scenarios and its performance is compared with the stan-
dard LMS algorithm. The two scenarios are depicted in Fig. 2.

A. Adaptive Antenna Combiner

In this simulation, we consider a receiver using multiple an-
tennas to achieve diversity gain. The receiver uses an adaptive
filter to combine the received signal on different antennas and
estimate the transmitted symbol. Channel taps on multiple an-
tennas are independent and each has a Rayleigh distribution with
the same Doppler frequency. To model the channel phase and
magnitude variation accurately, we use Jake’s model [4] to gen-
erate the Rayleigh fading channel taps with certain Doppler fre-
quency. A PSK constellation with Gray labeling is used as the
modulation scheme, with a symbol rate of 1 MS/s. One hundred
different channel realizations are simulated, each run over 2000
symbols. In this configuration, and referring to (11) and (12),
the vector u contains the received signal on multiple antennas,
and d is the transmitted symbol to be estimated. Fig. 3 and 4
show the simulation results for two different set of system pa-
rameters with Doppler frequencies of 480 and 320 Hz, respec-
tively. These Doppler frequencies correspond to velocities of 60
and 40 mph at the carrier frequency of 5.4 GHz. The LMS al-
gorithm contains only the squared-error term with step-size pa-
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Fig. 3. BER versus SNR for an 8-PSK constellation with five receiver

antennas, ft; = 0.01, o = 1.

BER

o LMS (11,)=(0.001,0)
10k o Lws: (1,,1,)=(0.010,0)

v LMS {(141,)=(0.020,0)

% LMP-LMS :(u1,)=(0.001,200)

i
0 2 4 6 8 10 12 14 16 18 20
SNR(dB)

Fig. 4. BER versus SNR for an 8-PSK constellation with five receiver
antennas.

rameter /1, and the proposed algorithm includes both the terms
with step-size parameters y and po. Realizations of the esti-
mated constellation at the output of the antenna combiner for
both algorithms are depicted in Fig. 5.

The effect of 141 and p5 on the performance of the proposed
algorithm is also evaluated. Fig. 6 shows the ratio between the
bit error rates achieved by the standard LMS and by LMP-LMS,
i.e., BER\is/BER 1 Mp—1.Ms5, for a fixed SNR. A Doppler fre-
quency of 480 Hz is assumed for this simulation. As shown in
the plot, certain choices of 2 can result in one to two orders of
magnitude improvement in the BER over a standard LMS algo-
rithm.

B. Adaptive Rake Receiver

We also simulated a Rake receiver used in DS-CDMA sys-
tems [Fig. 2(b)]. The receiver uses an adaptive filter to esti-
mate the Rake coefficients and track the channel variations. A
multipath channel with independent taps is used in the simu-
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Fig. 5. Recovered constellations at the output of the antenna combiner. The
left plot is the result of using LMS, while the right plot is the result of using
LMP-LMS.
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1, (phase-—error term) 107 qp*

1, (squared-error term)

Flg 6. BERLMS/BERLMprMS for a fixed SNR of 20 dB, 8-PSK
constellation, and five receiver antennas.

lation. Similar to the previous section, each channel tap has a
Rayleigh distribution with the same Doppler frequency. The re-
ceived signal is first correlated with the PN sequence to pro-
vide an estimate for the CDMA symbol through each finger
and then combined by the Rake coefficients. A QPSK modu-
lation is used in the simulation which is the typical one used
in current DS-CDMA systems. A Doppler frequency of 480 Hz
and CDMA symbol rate of 32 KS/s is considered for this sce-
nario. In this configuration, the vector u contains the corre-
lation results provided by the rake fingers and d is the trans-
mitted CDMA symbol. Fig. 7 shows the simulations results for
a four-tap channel and three-finger Rake receiver, which is a
typical scenario considered for DS-CDMA simulations.

The following are some comments and concluding remarks
on the performing behavior of the proposed algorithm. As
shown in Fig. 6, the LMP-LMS algorithm can outperform
the LMS algorithm for different values of p; and po. One
scenario is when the same 1 is used for both algorithms and
the other scenario is when a different pq is used in LMP-LMS
algorithm. In the first approach, the same p; is used for both
the LMS and LMP-LMS algorithms, as shown in Fig. 3.
In this case, the squared error term has the same step-size
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Fig. 7. BER versus E. /N, for a CDMA system with processing gain (PG) of
32, QPSK modulation and three-finger Rake receiver.

in both the algorithms and the claim is that the additional
phase error term in the LMP-LMS algorithm can improve the
performance. This case proves useful when the LMS step-size
(41 1s not tuned to the optimum value (e.g., when the maximum
Doppler frequency is not known) and adding the phase error
term helps to improve the performance significantly even if
(1 is not properly adjusted. The second approach is to use a
different p; for the LMP-LMS algorithm. Figs. 4 and 7 show
the performance improvement when the LMP-LMS algorithm
is used with a different ;. In this approach, the p; is tuned
for the LMS algorithm separately (13 = 0.04 in Fig. 7) and a
different 14 is used in the LMP-LMS algorithm along with a yo
parameter (3 = 0.001, uo = 100 in Fig. 7). This is consistent
with the observation shown in Fig. 6 that a wide range of 1y
and p» can result in an improvement compared to the LMS
algorithm. (Note that the phase term in the LMP-LMS iteration
is in radians.)

V. CONCLUSION

A cost function based on both phase error and magnitude
error is introduced, and two adaptive algorithms are developed
based on this cost function. In tracking fast channel variations,
the new algorithms outperform the standard LMS filter, which
is based solely on the squared-error criteria. The purpose of this
letter was to describe the filters and to illustrate their superior
performance.
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