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Bilinear Signal Synthesis Using Polarization Diversity
Moeness G. Amin, Fellow, IEEE, and Yimin Zhang, Senior Member, IEEE

Abstract—Bilinear synthesis of nonstationary signals impinging
on a multiantenna receiver has been recently introduced. The dis-
tinction in the spatial signatures of the sources provides a vehicle to
reduce noise and source signal interactions in the time–frequency
domain, and hence improves signal synthesis. In this letter, we uti-
lize another form of diversity for enhanced source time–frequency
signal representations. It is shown that cross-polarization antennas
can be used to mitigate cross terms via simple polarization aver-
aging.

Index Terms—Polarization, signal synthesis, time–frequency
(t–f) distribution.

I. INTRODUCTION

T IME–FREQUENCY distributions (TFDs) have been
found useful in the analysis and classification of non-

stationary signals [1], [2]. In [3], it is shown that the array
manifold can be used to improve syntheses of signals with rapid
time-varying frequency characteristics. In essence, averaging
TFDs across different array sensors trades off the spatial
dimension for enhanced autosource TFDs. Spatial averaging
mitigates the cross-source time–frequency (t–f) terms as well
as reduces the noise contribution.

When the receiver is not equipped with an antenna array, or
the array is of small aperture, the spatial averaging of TFDs pro-
posed in [3] will no longer be effective or applicable. A pos-
sible alternative is to use cross-polarization antennas where the
polarization dimension can be utilized to enhance t–f signature
estimation and subsequently leads to improved signal synthesis
performance. The polarization-based t–f signal synthesis can be
used for a single as well as multiple antennas. In this letter,
we restrict our discussion to the simple case of a single pair of
cross-polarization antennas. The generalization to applications
of multisensor receivers is straightforward and is addressed in
[4].

Signal polarization properties have been commonly utilized
in wireless communications and synthetic aperture radars [5],
[6]. Distinct polarization signatures of different sources can be
observed when the sources have different transmitter polariza-
tions or distinct channel characteristics.

This letter is organized as follows. The signal model is pre-
sented in Section II. Section III proposes the polarization av-
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eraging for t–f signal synthesis. The analogy between the pro-
posed method and the array averaging is also considered. Nu-
merical simulations are given in Section IV.

II. SIGNAL MODEL

The discrete-time data received at a cross-polarization an-
tenna, which receives two orthogonal polarizations (e.g., ver-
tical and horizontal polarizations), is expressed in the following
vector format:

(1)

where and represent the two orthogonal polarizations, and
denotes transpose.
The expression

(2)

defines the auto- ( ) and cross-polarized ( ) TFDs
of the two polarizations, where and are the time and the
frequency indexes, respectively, is the time–frequency
kernel [7], and denotes complex conjugate. Each of and
takes either value of the polarization index or . The auto- and
cross-polarized TFDs can be combined to form the following
2 2 polarization TFD matrix:

(3)

where superscript denotes transpose conjugation. The diag-
onal entries of are the autopolarized TFDs, whereas
the off-diagonal elements are cross-polarized TFDs.

Assume source signals , , are incident on
the antenna. The received data for each polarization is the linear
combination of the same polarization components of the source
signals and noise. That is,

(4)

where represents the mixing coefficient of the th source
along the th polarization, and is the noise component at
the same polarization. In the vector form, can be decom-
posed into the following terms:

(5)

1070-9908/04$20.00 © 2004 IEEE



AMIN AND ZHANG: BILINEAR SIGNAL SYNTHESIS USING POLARIZATION DIVERSITY 339

where , ,
, and . Be-

cause of the ambiguity with respect to the signal strength and
the propagation attenuation, it is convenient to assume that

, , and the propagation attenuation
scalar is absorbed in . The noise elements are modeled as
stationary and white complex Gaussian processes with zero
mean and variance in each polarzation, i.e.,

(6)

where is the Kronecker delta and denotes the
identity matrix.

III. POLARIZATION AVERAGING

It is clear from Section II that the signal model of the cross-
polarization antenna case is similar to that of a two-antenna
array. The only difference is that the source polarization vector

is used in place of the source spatial signature, or steering
vector. Accordingly, polarization averaging can be equally ef-
fective as spatial averaging in mitigating the TFD cross terms.

From (2) and (4), the autopolarization TFD of is given
by

(7)

where represents the autosource TFD (if ) or
the cross-source TFD (if ). The presence of cross-source
terms often obscures the true power localization over time and
frequency.

Averaging the autopolarization TFDs over the two polariza-
tion branches yields

(8)

In (8), is the inner product of the polarization signatures
and . Define the polarization correlation coefficient

(9)

Accordingly, (8) can be expressed as

(10)
The above equation shows that is a linear combination
of the auto- and cross-polarization TFDs of all signal arrivals. It
is straightforward to show that for the th and the th sources

if

if (11)

indicating that the constant coefficients in (10) for the autopolar-
ization TFDs are always greater than, or at least equal to, those
for the cross-polarization TFDs. For sources with distinct polar-
izations, , leading to significant suppression of cross
terms, and thereby enhancing the signal signature estimation.

An interesting case arises when two signals have orthogonal
polarization signatures, i.e., for . In this case,
the cross terms between these two source signals will be entirely
eliminated and only the autoterms will be maintained.

The t–f kernel in (2) and (3), which introduces temporal aver-
aging of the local autocorrelation functions at consecutive time
samples, can be selected to reduce the TFD noise effect for
the single antenna case, as discussed in [8] and [9]. However,
even without kernel smoothing, the polarization averaging in
(10), similar to spatial averaging [10], decreases the noise vari-
ance and its interaction with the signal components beyond that
achieved in a single antenna (polarization) case. Once the po-
larization averaging is performed and the t–f signature is identi-
fied, we can then proceed with the bilinear syntheses using the
methods described in [2].

It is noted that, although the model used allows for source
signals to be present, there are only two dimensions of polariza-
tion diversity for a single cross-polarization antenna. Therefore,
when , while the cross terms between different source sig-
nals can still be substantially mitigated, it becomes impossible
to completely eliminate all the cross terms unless more sensors
are used.

IV. SIMULATION RESULTS

In this section, we provide computer simulations to demon-
strate the improvement gained by the proposed technique in the
reduction or elimination of cross terms and signal synthesis.
Two high-order frequency modulated signals are considered on
a dual-polarization dipole. Their polarizations are assumed to
be orthogonal, with the following mixing matrix:

The length of the signal sequence is set to . The ad-
ditive noise is zero mean, Gaussian distributed, and white. The
input SNR is 3 dB.

With the presence of high-level noise and close t–f signatures,
it is very difficult to identify these t–f signatures when only a
single-polarization sensor is used. Fig. 1 shows the extended
discrete-time Wigner–Ville distribution (EDTWVD) [11] of the
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Fig. 1. EDTWVD computed from the signal received at the vertical
polarization antenna.

Fig. 2. EDTWVD averaged over two polarizations.

data received at the vertically polarized antenna. However, as ev-
ident from Fig. 2, the t–f signatures of the two signals can be re-
vealed when polarization averaging is applied. Fig. 2 shows that
the cross term between the two signals is completely eliminated
and that the variance of noise terms is reduced. Masking the first
signal and applying standard signal synthesis techniques yield a
high-quality signal recovery. Fig. 3 shows the TFD of the syn-
thesized signal waveform of the first signal.

V. CONCLUSION

Polarization averaging allows effective cross-term reduction
and autoterm enhancement, aiding source time–frequency

Fig. 3. EDTWVD of the synthesized waveform of the first signal.

signature estimations and waveform recovery. Averaging TFDs
across polarizations can be performed concurrently with TFD
averaging across the array, thereby utilizing both spatial and
polarization diversity in syntheses of nonstationary signals.
However, polarization averaging can be applied alone if the
difference in the source spatial signatures is insufficient for
cross-term reduction, or the receiver is not equipped with
antenna arrays.
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