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Multicriteria Design of Oversampled
Uniform DFT Filter Banks

Ka Fai Cedric Yiu, Nedelko Grbi¢, Sven Nordholm, and Kok Lay Teo

Abstract—Subband adaptive filters have been proposed to
avoid the drawbacks of slow convergence and high computational
complexity associated with time domain adaptive filters. However,
subband processing causes signal degradations due to aliasing
effects and amplitude distortions. This problem is unavoidable
due to further filtering operations in subbands. In this letter,
the problems of aliasing effect and amplitude distortion are
studied. Prototype filters which are optimized with respect to those
properties are designed and their performances are compared.
Moreover, the effect of the number of subbands, the oversampling
factors and the length of the prototype filter are also studied.
Using the multicriteria formulation, all Pareto optimums are
sought via the nonlinear programming technique. We find that
the prototype filter designed via the Kaiser window provides
the best overall performance among the methods we studied.
Also, there is a critical oversampling factor beyond which the
improvement of performance is diminishing. Finally, if the length
of the prototype filter increases with the number of subbands,
an increase in the number of subbands will not deteriorate the
performance.

Index Terms—Aliasing effect, amplitude distortion, filter bank,
nonlinear programming, Pareto optimum, subband adaptive filter.

1. INTRODUCTION

DAPTIVE filtering in subbands is an attractive alterna-

tive to full-band schemes in many applications. The DFT
multirate filter banks are commonly used for efficient realiza-
tion of the analysis and synthesis filter banks [1], [2]. However,
the analysis of a signal into a subband representation and the
synthesis back into its original full-band form has several diffi-
culties. Noticeably, subband filterings introduce signal degrada-
tions which include signal distortions and aliasing effects [3]. It
is well-known that a filter bank can be designed alias-free and
the signals can be perfectly reconstructed when certain condi-
tions are met by the analysis and synthesis filters. However, any
filtering operation in the subbands may cause possible phase
and amplitude changes and thereby altering the perfect recon-
struction property. There are trade-offs in controlling both the
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aliasing effect and the distortion level. Non-critical decimation
has been suggested in [4] to improve the overall performance
of the filter banks. Depending on the level of oversampling, the
cost of computation also increases significantly.

In general, the filter bank design problem is a multicriteria
decision problem, where the criteria are the level of distortion
and the level of aliasing effect. A very sharp prototype filter will
decrease the aliasing effect and distortion, but the length of the
filter will be prohibitively long. In practice, the length of the
prototype filter is often limited. Within this limit, the optimal
filter must be sought. Methods have been proposed to minimize
both criteria simultaneously, such as [5]. However, more flexible
designs of the prototype filter have not yet been considered, and
individual criterion has not yet been controlled directly. In this
letter, these problems are addressed.

The performance of the filter bank depends on the choice of
the prototype filter, the length of it, the number of subbands,
and the oversampling factor. Here, we study the optimal designs
for different combinations of parameters. To this end, the mul-
ticriteria formulation is used and is tackled via the nonlinear
programming technique. This approach is versatile in the way
that the specific performance of the filter bank can be imposed
in advance. The aliasing and distortion levels can be controlled
easily and the corresponding optimal weights can be sought. In
this way, all the Pareto optimums can be calculated.

In assessing the performance, different prototype filter
designs are studied here. These include the window method
[6] with the Hamming window, the Kaiser window and the
Dolph—Chebyshev window, and the minimax method. These
methods are chosen since there are at most two free parameters
which makes the filter design very simple. In addition, these
window functions have different characteristics in controlling
the main-lobe and side-lobes. The Hamming window is a
standard window which adjusts the cutoff frequency only. The
Kaiser window is a close approximation of the spheroidical
wave functions and will concentrate the maximum energy to
the centre. The Dolph—Chebyshev window tries to minimize
the main-lobe width for a given side-lobe level. Among the
windows investigated, we show that the Kaiser window gives
the best overall performance with or without oversampling
among the methods we study. Also, the effect of the oversam-
pling factor, the number of subbands and the length of the
prototype filter is also investigated.

II. UNIFORM DFT MODULATED FILTER BANK

In a typical analysis—synthesis DFT filter bank, two sets of
K filters form a uniform DFT analysis filter bank and synthesis
filter bank. Assuming the same prototype filter with length L is
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applied for both analysis and synthesis, the subband filters are
related to the prototype FIR filter as

Hy(z) = H (:Wf) = h"¢ (zW) K—1 (1)
where Wy = e 727/K h = [n(0),---,h(L—1)]" and ¢(z) =
[1,271, .-, 2= (=D]T Each subband signal is decimated by a
factor D. An implementation of this filter bank is depicted in
Fig. 1. From Fig. 1, the input—output relationship can be derived
and is given by

53X

k=0,

K-1
X (zWh) > H (:2WEWh) H* (:W)
k=0

1=0 =
2
where Wp = ¢7927/D and Wy = e927/K and x denotes
conjugate. This may be rewritten as
D-1
2) =Y A2)X (zWp) 3)
=0
where
| Kl
Alz)=5 D H (zWEWE) H* (2W). (4)
k=0

If Ay(z) = 0forl =1,2,...,D — 1, and Ag(2) = az~?, for
any a, b where a # 0, we get a perfect reconstruction filterbank.
However, any filtering operation in the subbands may cause pos-
sible phase and amplitude changes and thereby altering the per-
fect reconstruction property. Our main objective is to minimize
both the aliasing power and the amplitude distortion by opti-
mizing the prototype filter coefficients h. The aliasing power
and the amplitude distortion can be defined as

T D—1

/Z | Au( —J“| dw (5)

—T

and
A = — 1- A € J dw 6
D 9 D/( | 0( )|) ( )

respectively. The aliasing effect is best understood by looking
at Fig. 2 where an oversampling clearly reduces the aliasing ef-
fect due to the transition width of the prototype filter. When the
oversampling factor increases, the lines of aliasing move apart
to reduce the aliasing effect. In optimizing the prototype filter,
simply minimizing a sum of both measures may result in per-
formance skewing toward one extreme. There is no easy way to
introduce any scaling factor to adjust such uneven performance.
Because there are more than one objective in the design of the
filter bank, it is basically a multicriteria design problem [7], [8].
When different restrictions are imposed to the criteria in the de-
sign process, a solution set can be derived in which all solutions
are efficient, or Pareto optimum. In the present context, the set
of weights h”™ is Pareto optimum if and only if there does not
exist a set of weights h such that

Ap(h) < Ap(h™) and Ap(h) < Ap(h") (N
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Fig. 1. Direct form realization of an analysis and synthesis filter-bank.
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Fig. 2. Aliasing effect is reduced with oversampling (2x).

with strict inequality to at least one of the criteria. In order
to solve for the Pareto optimum, some of the criteria can be
formulated as constraints instead so that it becomes a nonlinear
programming problem. An additional advantage of using this
formulation is that the constraints can be adjusted freely to select
the desired filter from the set of Pareto optimum solutions.

III. PROTOTYPE FILTER DESIGN

A typical nonrecursive causal prototype FIR filter can be de-
fined by the transfer function

L1
= Z h(n)z=". (8)
n=0

There are several ways to design this type of filters. One method
is to use a window function. The filter coefficients h(n) are
given by the Window method as [9]

sin (27rfC (n — %)) w(n)

(-5

where w(n) is a window function. For a given number of sub-
bands, K, and a given decimation/interpolation factor, D, and for
a certain filter length, L, we need to design the cutoff frequency
0 < fe < (1/2) and the corresponding window function.

h(n) = )



YIU et al.: MULTICRITERIA DESIGN OF OVERSAMPLED UNIFORM DFT FILTER BANKS 543

K=32, L=3 K, Amplitude distortion=-20

-20 T T T T T T T
=30
_a0l
o i Remez
3 Hamming
§ -s0- / 1
o
Q
o
£
@
©
T 60 L emm\mrm == 7
= -
5 - .
[ I TP
-or / Kaiser ]
Dolph-Chebyshev
-80 4
-90 1 1 —1 1 L 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Downsampling ratio K/D (critical downsampling=1)

Fig. 3. Comparison for different design methods.
Prototype filter designed by Kaiser window with L=K
-10 T T T T T T
T K=32
— K=64
- - K=128
o -15r
2
)
H
o
Q
o
£
%
8
s
s
O
e
-20f
-
-
-
-
-
-
25 . . . . . . , )
0.1 0.2 0.3 0.4 05 06 07 0.8 0.9

Downsampling ratio K/D (critical downsampling=1)

Fig. 4. Comparison for different number of subbands with L = K.

A simple popular window function is the Hamming window,
and can be defined as [10]

2mtn

(1 —a)cos 777,

Mm:{a_ 0,

n=0,1,---,L—1

10
otherwise (10)

where @« = 0.54. There is no additional parameter for this
window function.

In case of the Kaiser window, there is an additional design pa-
rameter «.. Also, it can control the ripple ratio and the main-lobe
width. This window is given by

1 (o2 - - 52)
(/)

where I,,(x) is the zeroth-order modified Bessel function of the
first kind.

(11)
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Fig. 6. Comparison for different number of subbands with L = 5 K.

Another window which can vary the ripple ratio and
main-lobe width is the Dolph—Chebyshev window, defined as

@-y
101 2 2o COS T 2nmi
w(n)—f ;-}-2 ; Tr_1 <T>cos< T >

(12)

where r is the ripple ratio as a fraction, and

1 1

= cosh ht=).

Tg = COS <L 1 cos r) (13)

Function T} (z) is the kth-order Chebyshev polynomial associ-
ated with the Chebyshev approximation for recursive filters and
is given by

Ti(z) = { cos(kcos™! z),

for |z| <1,
cosh(cosh™! ),

for |z| > 1. (14

The additional design parameter is therefore r for this window.
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Apart from using the window method, it is also possible to use
the minimax technique [9] instead of the least-squares technique
to design (8). Once the cutoff frequency f. and the stop-band
frequency fs is fixed, the minimax optimization problem can
be solved quickly via the Remez exchange algorithm. The two
design parameters for the minimax method are f. and f.

In order to control the aliasing effect and the amplitude dis-
tortion separately, the final optimal design problem can be for-
mulated into an equivalent nonlinear programming problem as:

mvin Ap (h(7)) 5)
subject to
Ap (h(y)) <€ (16)

where ¢ is a pre-defined tolerance for the aliasing effect. The
level of distortion can now be controlled freely. Note that « is
one-dimensional for the Hamming window and two-dimen-
sional for the other windows and the minimax method. One
well-known method for solving this nonlinear programming
problem is the sequential quadratic programming (SQP). This
method is well described in [11] or [12] and will be applied
here.

IV. EVALUATION RESULTS

In the following, the amplitude distortion is restricted to be
less than —20 dB throughout. The first example is to assess
different designs of the prototype filter and its implication to
the aliasing effect for different oversampling factors. The re-
sult is depicted in Fig. 3. The first observation is that by in-
creasing the oversampling factor, the optimal aliasing effect is
decreasing. However, the decrease in the total aliasing power
is diminishing when the oversampling factor increases. There is
an critical oversampling factor, which resembles the point of in-
flection in the curve, beyond which there is very little improve-
ment in the aliasing effect. The second important observation
is that there is a big difference in performance between dif-
ferent windows, and the Kaiser window out-performed all the
other methods for all oversampling factors. The oversampling
Kaiser window provides a “don’t-care” region in the pass-band
of the prototype filter, which provides us with extra degrees of
freedom in the design process. The Kaiser window is shown to
make better use of these extra degrees of freedom. Moreover, the
ripple ratio decreases with increasing «.. This parameter can be
effectively employed to trade off the main-lobe width against
the side-lobe amplitude. Finally, the minimax technique does
not perform well in the filter bank design. This can be due to
the fact that the cost function Ap is defined in a least-squares
sense, and is therefore not in favor of the minimax technique.
Further study is required if the cost function is defined differ-
ently, possibly in a minimax sense.

In order to understand the influence of the prototype filter
length and the number of subbands, we use the Kaiser window
as a demonstration. As the number of subbands increases, the
passband gets narrower. Thus, it is harder to maintain the low
distortion level unless the length of the filter increases to allow
for a narrower transition region. If the filter length is equal to
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the number of subbands, the result is shown in Fig. 4. In this
case, it is simply a weighting of an FFT with different oversam-
pling factors. It is interesting to see that as the number of sub-
bands increases, there is almost a uniform improvement to the
aliasing effect for all oversampling levels. If the filter length is
fixed to be a constant multiple of the number of subbands, the
results are depicted in Figs. 5 and 6. The optimal aliasing effects
improve significantly. For sampling factors near to the critical
one, the aliasing effect decreases uniformly with the increase
of number of subbands. But this decrease diminished for higher
oversampling factors. The critical oversampling factor can be
read out from the graph which is roughly equal to the point with
the highest curvature.

V. CONCLUSIONS

In this letter, the problem of filter bank design has been
studied. The design problem has been formulated as a multicri-
teria optimization problem. Using the nonlinear programming
technique, all the Pareto optimums can be solved and studied.
Different window methods have been investigated. It turns out
that among the methods we have studied, the Kaiser window
gives the best performance with the lowest aliasing effect for a
fixed amplitude distortion level. If the length of the prototype
filter is proportional to the number of subbands, the optimal
aliasing effect generally improves with the number of subbands
for sampling factors close to the critical one. If oversampling is
employed, we find that the improvement to the aliasing effect
is diminishing. The critical oversampling factor is the point
with highest curvature beyond which very little improvement
in performance is observed.
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