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Accurate Frequency Estimation
for Real Harmonic Sinusoids

K. W. Chan and H. C. So, Member, IEEE

Abstract—A linear prediction based method is proposed for
real harmonic sinusoidal frequency estimation. The estimator
basically involves two steps. An initial fundamental frequency
estimate is first obtained by solving a standard least-squares
equation with exploitation of the harmonic structure of the
sinusoidal signal or by using the MUSIC approach. Based on
the initial estimate, an optimally weighted least squares cost
function is then constructed from which the final estimate is
acquired. Computer simulations show that the performance of the
estimator approaches Cramér-Rao lower bound for sufficiently
high signal-to-noise ratios and/or data lengths.

Index Terms—Frequency estimation, harmonic sinusoidal sig-
nals, weighted least squares.

I. INTRODUCTION

ALTHOUGH there are numerous algorithms for frequency
estimation of sinusoidal signals in the literature such as

maximum likelihood [1], nonlinear least squares [2] and sub-
space methods [3]–[5], little attention [6], [7] has been paid to
the special case of harmonic sinusoids. In fact, harmonic fre-
quency estimation has important applications in speech signal
processing [8]–[10], automotive control systems [11] as well as
instrumentation and measurement [12].

In [6], complex harmonics are considered and accurate fre-
quency estimation is achieved via weighted least squares (WLS)
where the weighting matrix is given by the Markov estimate
[13]. To construct the Markov estimate, initial estimation of all
tone amplitudes, frequencies and phases is required, which is
fulfilled by applying the MUSIC [4] approach. In this paper,
we extend the idea of the WLS technique to real harmonic sinu-
soidal frequency via utilizing the linear prediction (LP) property
as well as the harmonic structure. Unlike [6], the proposed algo-
rithm directly estimates the fundamental frequency and does not
involve computation of the sinusoidal amplitudes and phases,
which is not our concern.

The rest of the paper is organized as follows. Algorithm de-
velopment for real harmonic sinusoidal frequency estimation is
presented in Section II. In Section III, simulation results are in-
cluded to evaluate the performance of the estimator in different
conditions. Finally, conclusions are drawn in Section IV.
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II. PROPOSED ALGORITHM

The harmonic sinusoidal signal model is

(1)

where

where , and are unknown constants which represent
the fundamental frequency, the th amplitude and phase cor-
responding to the th harmonic, respectively, and
is a white additive noise with unknown variance . The aim
is to estimate from the samples of . Notice that when
the number of sinusoids, namely, , is not available, it can
be accurately estimated using the Akaike information criterion
[14], minimum description length [15], or more recent tech-
niques including singular value decomposition [16] and eigen-
value factorization [17]. As a result, we reasonably assume that

is known a priori in this paper as our focus is in frequency
estimation.

Starting with the LP property of sinusoidal signals, it is well
known that is perfectly predictable from its past sampled
values as

(2)

where

and represents the transpose operation. The frequency infor-
mation is uniquely related to the LP coefficients in and it is
noteworthy that we have exploited the symmetry of [18],
namely, , . More exactly, the
harmonic frequencies are given by the phases of the roots of

(3)

The next step is to express , , in terms
of , which is achieved by using the Chebyshev polyno-
mial of the first kind [19]

(4)
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where

and denotes rounding to the nearest integer to-
wards minus infinity. Substituting (4) into (3), can be
written as where and

. The corresponding LP
error function is then

(5)

where

and is an estimate of with and is a function of the
frequency estimate . Representing all the prediction
errors in vector form, we have

(6)

where

Since it is well known that minimizing the LP errors via stan-
dard least squares [20] will give biased frequency estimates, we
propose to use WLS with an optimal weighting matrix which re-
sults in unbiased frequency estimation. Based on the WLS tech-
nique, the fundamental frequency is estimated via minimization
of the following cost function

(7)

where is a symmetric weighing matrix. The optimal is
given by the Markov estimate and has the form of

(8)

where is constructed using the ideal , denotes expectation
and is the matrix inverse operation. It has been shown (see
the Appendix) that the optimal is a Toeplitz matrix and
thus it is characterized by its first column, say,

(9)

where

...

...
...

is of dimension and is a zero matrix with
dimension , denotes Kronecker matrix product, repre-
sents the identity matrix with dimension and
has all elements 0 except 1 in its lower th diagonal. In practice,

should be constructed from the frequency estimate, which is
obtained from solving

(10)

where denotes trace operation. Since all elements of
are identical in every off-diagonal, the

coefficients of the polynomial can be easily determined by
summing the off-diagonal elements of . The
fundamental frequency estimate is chosen as the root which
has the smallest value when substituting into . Since

depends on which is not available at the beginning, we
suggest the following iterative procedure.

i) Find an initial fundamental frequency estimate. This is
achieved by setting , finding all the roots
in (10) and then choosing the one which minimizes (7) as

, or using the MUSIC algorithm for real sinusoids [21]
where equals the smallest frequency estimate. We refer
the algorithms using the first and second initializations to
as the WLS and WLS-MUSIC methods, respectively.

ii) Use to construct based on (8).
iii) Find all the roots in (10) and choose the one which min-

imizes (7) as .
iv) Repeat ii) and iii) until the absolute difference between

successive fundamental frequency estimates is less than
, where is a small positive constant.

It is noteworthy that as in many iterative frequency estimation
algorithms [22], [23], there is no guarantee of convergence for
the proposed method, although extensive simulation results
have been performed to illustrate its global convergence for
sufficiently large signal-to-noise ratio (SNRs) and/or data
lengths.

III. NUMERICAL EXAMPLES

Simulation tests have been carried out to evaluate the
performance of the proposed harmonic frequency estimator
by comparing with the MUSIC approach for real sinusoids
[21] as well as Cramér-Rao lower bound (CRLB). Since [21]
does not assume harmonically related frequencies, a better
fundamental frequency estimate is simply to use a standard
least squares procedure on all frequency estimates and the
performance of this improved estimator, which is referred to
as the modified MUSIC, is also included. The signal consists
of harmonic components corrupted by a zero-mean
white Gaussian noise. The amplitudes of the real sinusoids are
all equal to 1 while the phases for the fundamental tone, first
and second harmonics are 0, and , respectively. The
parameter of the termination criterion in the proposed approach
is given by , and in most realizations at most three
iterations are needed for the algorithm convergence. All results
provided are averages of 500 independent runs.

In the first example, the mean-square frequency errors
(MSFEs) of the proposed algorithm versus SNR are investi-
gated. The number of samples is set to 20 and the funda-
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Fig. 1. Mean square frequency errors versus SNR at ! = 0:2� and N = 20.

Fig. 2. Mean square frequency errors versus SNR at! = 0:2� andN = 200.

mental frequency is selected as while different SNRs are
obtained by properly scaling the noise sequence. In Fig. 1, we
see that the MSFEs of the WLS and WLS-MUSIC algorithms
attain the CRLB for and ,
respectively. It is because the initial estimates provided by
the WLS method are biased while those of the WLS-MUSIC
algorithm are unbiased, which makes the former more probably
converge to local instead of global solution for smaller SNR
conditions. Apart from the threshold regions, the proposed
approach outperforms the MUSIC and modified MUSIC by
approximately 13 dB and 2 dB, respectively. As a result, the
optimality of the WLS scheme is demonstrated when the
sample size is small.

The above test is repeated for and the results are
shown in Fig. 2. Comparing with Fig. 1, similar results are ob-
served except that the threshold SNRs of all methods are re-
duced. The optimality of the WLS scheme for large data lengths
is thus demonstrated.

Fig. 3. Mean square frequency errors versus ! at N = 200 and SNR =

30 dB.

In the final example, the MSFEs of all methods versus dif-
ferent is studied. Fig. 3 shows the results when the SNR
is kept as 30 dB, , and the fundamental frequency
is varied in the range of . We observe that when
the harmonic frequencies are sufficiently separated, say,

, the MSFEs attain the CRLB. Furthermore, the superi-
ority of the WLS approach over the MUSIC algorithms is again
observed.

IV. CONCLUSIONS

We have presented an iterative weighted least squares
approach for real harmonic sinusoidal frequency estimation.
Through computer simulations, it is shown that the mean
square frequency errors of the developed method can attain
Cramér-Rao lower bound for sufficiently high signal-to-noise
ratios and/or data lengths. Comparing with other optimal
estimators such as maximum likelihood estimation and non-
linear least squares, the proposed estimator is computationally
efficient because no searching procedure is involved.

APPENDIX

Using the ideal , the inverse of is derived as

(11)
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It is easy to show that is symmetric Toeplitz and thus only
the first column of , say, , is needed to be determined.
Denoting by the th row of , we have

(12)

Let us first consider the term . The th
row, , of is given by

(13)

where

Since
, the expected value of the Kronecker

product of the th row of , namely, , and , after
vectorization, is

(14)

where represents vectorization operation. Expression (14)
can also be written as

(15)

Since the dimensions of the matrices in (14) and (15) are the
same, the operator can be removed and we get

(16)

Grouping the results in (16) for all rows, ,
yields

... (17)

Substituting (17) into (12) gives (9).
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