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Maximal Gap of a Sampling Set for the Exact Iterative
Reconstruction Algorithm in Shift Invariant Spaces

Wen Chen, Member, IEEE, Bin Han, and Rong-Qing Jia

Abstract—A conventional A/D converter prefilters a signal by an
ideal lowpass filter and performs sampling for bandlimited signals
by the Nyquist sampling rate. Recent research reveals that A/D
conversion in a shift invariant space provides more flexible choices
for designing a practical A/D conversion system of high accuracy.
This paper focuses on the maximal gap of a sampling set for the
iterative algorithm in shift invariant spaces, which provides an ex-
plicit formula to calculate the maximal gap of a sampling set in
terms of a generator of the undertaken shift invariant spaces.

Index Terms—A/D conversion, maximal gap, nonuniform sam-
pling, prefilter, shift invariant space, sampling set.

I. INTRODUCTION

I N digital signal processing and digital communications, an
analog signal is converted into a digital signal by an A/D

(analog-to-digital) conversion device.
A signal is said to be of finite energy if , where

is the square norm defined by .
We also denote by the collection of all signals of finite
energy, that is, . is said to be bandlimited if

whenever for some , where is the
Fourier transform of defined by . In
this case, is also called a -band signal.

A conventional A/D converter prefilters a signal of finite en-
ergy by an ideal lowpass filter and performs uniform sampling
by the Nyquist sampling rate [33]. Since in some practical sys-
tems sampling cannot be always made uniformly, one has to
consider the nonuniformly sampled signal [6], [20].

A discrete set is called a sampling set
for a signal if is completely determined by the sample set

is said to be separated if
, where is called the separation of . A sampling

set is said to be stable for a signal space if there
is a constant such that

(1)

holds for any signal .
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The nonuniform sampling for the bandlimited signals
is studied by Beurling, Landau and others [6], [23], [29].
It is understood that a separated is a stable sampling
set for the -band signal space if the Beurling lower den-
sity1 . Conversely, if
is a stable sampling set for the -band signal space. Since
Beurling-Landau’s theorem does not provide a reconstruction
formula, Feichtinger and Gröchenig established an iterative
reconstruction algorithm to handle the nonuniformly sampled
bandlimited signals [20].

For a , the shift invariant space generated by a
function is defined by [8], [26]

(3)

The and are, respectively, called a generator and the dila-
tion of the shift invariant space . Let .
Then contains exactly all -band signals of finite en-
ergy. Then the conventional A/D conversion can be formulated
as A/D conversion in . One can therefore consider A/D
conversion in a general shift invariant space for a general
generator .

In real world application, such an extension of A/D conversion
is useful and necessary, e.g., for performing nonideal prefiltering
[34], for avoiding Gibbs phenomenon in FFT [17], for using
the impulse response of fast decay [32], for taking into account
real acquisition and reconstruction devices [38], for considering
arbitrary band signals [24], for obtaining smoother frequency
cutoff or for numerical implementation [4], [5], [37], [38],
[40]. This is formulated by choosing an appropriate function

with some desirable shape corresponding to a particular
“impulse response” of a device, such as a compactly supported
function, a function with polynomial or exponential decay, or a
function with smooth cutoff frequency . Then one prefilters
a signal by the shift invariant space [7], [11], [37], and
performs sampling in [5], [10], [12], [14], [15], [37],
[39]. Furthermore, A/D conversion in shift invariant spaces does
provide more flexible choices to design various A/D conversion
systems of high accuracy [5], [10]–[15], [36], [37], [39], [40].

The prefiltering, uniform sampling and oversampling has
been well handled in the shift invariant spaces [7], [11]–[13],
[39], [27], [37], [40]. However, the nonuniform sampling in
shift invariant spaces is relatively tough. For instance, the

1Let v (r) denote the minimum number of points of X to be found in the
interval (�r; r), formally, v (r) = min #(X \ (x � r; x + r)). The
Beurling lower density is defined by

D (X) = lim
v (r)

2r
: (2)
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Beurling-Landau type sampling theorem in shift invariant
spaces is not yet established so far [3]. In 1996, Liu [31]
established the iterative reconstruction algorithm [20], [22] in
the spline shift invariant spaces, and then, in 1998, Aldroubi
and Feichitinger [2] established the iterative reconstruction
algorithm in a general shift invariant space. But the maximal
gap of the a sampling set for the iterative algorithm in a general
shift invariant space is unknown so far. Our objective in this
paper is to find the maximal gap of sampling set for the iterative
reconstruction algorithm in a general shift invariant space. We
shall also calculate some typical examples to illustrate our
result.

II. EXACT ITERATIVE RECONSTRUCTION ALGORITHM IN

SHIFT INVARIANT SPACES AND THEMAXIMAL GAP

OF A SAMPLING SET

To prefilter a signal by a shift invariant space is
equivalent to making a quasiprojection de-
fined by

where is the inner product in defined by

The aliasing error can be made arbitrarily
small as long as the dilation is sufficiently large [7], [11],
[27], [28]. In this paper, we focus on the nonuniform sampling
in shift invariant spaces. Hence we shall ignore the prefiltering
and assume that the signal is taken from a shift invariant space

. In this section, we are going to find the maximal gap of
sampling set for the iterative algorithm in shift invariant spaces.
We shall work in the framework of Wiener amalgam spaces
[19], [21], which is commonly used in sampling theorem for
shift invariant spaces. A Wiener amalgam space for some

consists of all measurable functions for which the norm

We now introduce the exact iterative algorithm [20] in shift
invariant spaces in a different sense to [1], [2].

For a discrete set , the -ball for a
is defined by

(4)

is called -dense if , where is called the max-
imal gap2 of if is the smallest one such that is -dense.
Take a sequence of nonnegative functions such that
is supported in and

(5)

2Maximal gap in this paper does not mean the “optimal maximal gap,” which
is the maximum one among the gaps between two consecutive samples of X ,
i.e., � = sup jt � t j if X = ft g .

Then the is called a bounded uniform partition of unity
(BUPU) with respect to . For a signal , we define the
interpolation operator by

(6)

It is well-known that the operator maps the space into
the space if is separated [18]. We also use the
symbol with the norms and being defined by

(7)

(8)

(9)

For a signal , it is easy to show if
[2], [10], [18]. Assume . Then we can interpolate the
samples of a signal with . By pro-
jecting the interpolation function into , we get an
approximation of the original signal .
Then we interpolate the samples
of the error with . By pro-
jecting the interpolation function of the error , we
get an approximation of the error .
Adding to , we get a new approximation to
the original signal . Let , and repeat the
interpolating and projecting procedures. We obtain an approxi-
mation sequence of the original signal .
In the following we will show that converges to in .

By the algorithm defined above, we know .
Then

, that is . Let
, where is the identity operator. Then ,

and consequently where is the norm
of the operator defined by

If we can show that is a contraction, that is, . Then
. Consequently in .

In order to show that is a contraction, we define the oscil-
lation function of a signal as

(10)

For a signal , there is a such that
. Therefore,

Then
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By Parserval identity, we have

Therefore,

(11)

Now we have to find the condition on such that is a
contraction

(12)

Since is an orthogonal projection, we have . There-
fore is a contraction if the maximal gap is small enough
such that

(13)

This is formulated in the following theorem.
Theorem 1: Assume that is a differentiable gen-

erator. Then any can be reconstructed from any
-dense set by the following iterative algorithm:

(14)

provided that

(15)

In practical application, one needs to know the explicit ex-
pression for and . Define by . Then for any

, one has

Define the Voronoi domain of the sampling points as

(16)

Let be the characteristic function of . Then for any sam-
pling set , one can choose a simple interpolation
function as

(17)

In this special case, one can improve the estimate (15) by a
factor by using Wirtinger’s inequality as in [31], that is, (15)
becomes

(18)

Let . Then if satisfies (15). From
(12), we have

(19)

Moreover, if is separated with separation , then

(20)

On the other hand, since is -dense, we have

(21)

By (19), (20) and (21), we derive

(22)

This is summarized in the following corollary.
Corollary 1: In Theorem 1, the is a stable sampling set for

if is separated.
When is a stable sampling set for , an explicit recon-

struction formula is found by us in [10].
If satisfies the Strang-Fix condition [35], that is

. Then by the Poisson Summation For-
mula. For a uniform sampling set , if is supported
on , then we can define by

Then Theorem 1 holds if .

III. CONCLUSION AND EXAMPLES

Prefiltering a signal by a shift invariant space provides
more flexible choices to design an A/D conversion system of
high accuracy. This paper focuses on the nonuniform sampling
in a shift invariant space . We obtain a formula to calculate
the maximal gap of a sampling set for the iterative reconstruc-
tion algorithm in the shift invariant space in terms of the
generator , that is

(23)
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When the interpolation function is chosen to be a simple
function, one can improve (23) by a factor of and obtain the
improved estimate

(24)

To construct a practical A/D conversion in a shift invariant
spaces, it is necessary to understand the maximal gap of sam-
pling set for performing sampling in a shift invariant space. Let’s
look at some practical examples.

Example 1: Meyer scaling function is defined by

where for for , and
. Then . Since , we

obtain the maximal gap

Example 2: B-spline of degree is defined by the
times convolution of the characteristic function of the interval

, i.e., . Then
and . Therefore, the maximal
gap is

Example 3: Gaussian kernel is defined by
. Then , and we have

and . Therefore,
we obtain the maximal gap
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