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Estimating Sensor Population via Probabilistic
Sequential Polling

Amir Leshem, Member, IEEE, and Lang Tong, Fellow, IEEE

Abstract—A probabilistic sequential polling protocol (PSPP)
is presented for the estimation of the sensor population in a
large-scale sensor network with a mobile access point. It is shown
that PSPP requires O(log, IN) sensor transmissions and a total
of O ((log, N)?) polls to achieve an arbitrarily predetermined
level of accuracy.

Index Terms—Estimation, polling, probabilistic algorithms,
sensor network with mobile access (SENMA), sensor networks.

1. INTRODUCTION

E CONSIDER the problem of estimating the number of

sensors that belong to a certain category. For example,
to maintain a large-scale network, one may be interested in how
many sensors are still operating. A related problem is to esti-
mate the number of sensors whose measurements have certain
attributes.

The specific network architecture considered in this letter is
sensor network with mobile access (SENMA) [2], in which a
mobile access point is capable of interrogating sensors. Such an
operation can be viewed, mathematically, as one of sampling
the sensor field. From a communication system design point of
view, on the other hand, the process of extracting information
from the sensor network has two separate phases: a down-link
broadcast from the mobile access point and an uplink transmis-
sion from sensors, both of which are energy consuming.

The primary design objective for large-scale sensor network
is energy efficiency. To this end, we are interested in proce-
dures that minimize the number of required transmissions.
The brute-force scheme that schedules [e.g., via time division
multiple access (TDMA)] transmissions of all sensors and
counts the number of receptions at the access point requires the
number of uplink transmissions at the order of O(N), where
N is the number of sensors in the category of interest. If a
random sampling strategy is used and the number of sensors
N is estimated by counting the number of distinct replies, the
number of required transmissions is O(N log, N) in order to
have diminishing probability of estimation error. In [4]-[6], the
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Good-Turing estimator [3] for missing mass is adapted for the
problem of estimating the number of operating sensors, which
requires, roughly, O(\/N ) number of transmissions [6], [7].

The strategies described above do not require down-link
transmission, and the energy consumption occurs mostly at
the uplink. In this letter, we present a polling strategy that
reduces the number of transmissions to the level of O(logy, N)
for sensors and within O ((log, N)?) down-link polls. What
makes this possible is the use of a sequential polling strategy
coupled with a stopping rule that guarantees any predetermined
accuracy.

II. PROTOCOL DESCRIPTION

Consider a sensor network with /N sensors, where NV is un-
known, and each sensor has an identity number from 1 to N.
This might be the case when polling an uncooperative sensor
network. We will focus on the case when each sensor belongs
to one of the two classes, e.g., either operating or nonoperating.
Alternatively, some sensors detected a given event while others
have not. We assume that the probability of observing an op-
erating sensor is larger than an unknown pg. Note that at the
first stage, we do not require accurate estimation of the proba-
bility of a sensor to operate but only need an upper bound. The
way to obtain such an overestimate using polling with arbitrary
accuracy will be discussed at a later stage. However, in some
cases, we can obtain this probability based on a priori surviv-
ability analysis of the sensors (e.g., expected battery-life time
of a sensor). The number of operating sensors that is unknown
will be denoted by [Ny . We would like to estimate [Ny. Since we
do not know the total sensor population, this is not an ordinary
sampling problem, where only the percentage of operating sen-
sors needs to be estimated. We also need to estimate the total
population size. To that end, we propose a probabilistic sequen-
tial polling protocol (PSPP). The protocol is probabilistic in the
sense that it has a design parameter ¢ that is decided a priori, in-
dependent of the actual number of sensors, and the probability
of success is above 1 — ¢. This approach is widely used, e.g.,
in the Rabin and Solovay—Strassen primality test algorithms,
where we set up the probability of failure low enough that we
are certain that the failure will actually not happen.

An important fact regarding the polling is that when the mo-
bile agent polls sensor number £, there can be the following three
cases.

1) Sensor number £ is operating. In this case, a positive
answer is obtained.

2) Sensor number /¢ is not operating. In this case, the
sensor does not answer.
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3) £ is an index of a nonexisting sensor. In this case, no
answer is obtained.

Based on the protocol, we cannot infer whether we are in case
two or three. However, we assume that each sensor has the same
probability to operate; therefore, when polling existing sensors,
we will not see long runs of sensors not providing an answer.
However, if £ > N, then for every k, £ + k is an index of a
nonexisting sensor. Therefore, we will see long runs of negative
answers. This is the only possible way to bound the total pop-
ulation size. Our analysis in the second section will show that
for each ¢, we can choose k() such that we maintain the prob-
ability of obtaining a run of no answers when starting to poll
sensor £ below /2. Using a union bound, we will obtain the
desired probability of failure of the algorithm.

The PSPP is composed of three steps.

1)  Estimate the probability pg that a sensor belongs to the
population of operating sensors by sampling of M sensors
with identity 1 to M.

2)  Estimate N .x—the maximum index of the operating
sensor. This is done by sequential polling. Whenever we
poll an operating sensor (with identity number ) and ob-
tain a positive answer, we continue to poll sensor number
2/. This ensures that, at most, O (log,(V)) operating sen-
sors are polled before we obtain an index of a nonexisting
sensor. If a negative answer is received, sensor ¢ + 1 is
polled until k(I) consecutive sensors fail to reply, where
k(1) is determined based on €. See Table 1.

3)  Enhancing the accuracy of the estimator p of pg to a re-
quired degree, and estimate the sensor population Ny by
ﬁNma)o

The purpose of the first step is to find a lower bound pg on
the probability of a sensor to operate. This is done through an
ordinary random sampling technique by sampling an initial seg-
ment of the sensors, i.e., the first M sensors for a fixed M. The
second step, which is the main contribution of the PSPP pro-
tocol, consists of the estimation of the total size of the popula-
tion. We show that this can be done in O ((log, N)?) down-link
transmissions and 2 log, N up-link transmissions. The last step
is a refinement of the random sampling phase to obtain a more
accurate estimate of the population size.

Table I provides the detail of the sequential polling strategy to
estimate Np,,x. Assume that pg and ¢ are given (where 0 < ¢ is
any positive number). The protocol first ensures that the correct
estimate is found with probability greater than 1 —e. The second
phase is described in Table 1.

The second phase is composed of two main components.
Steps (1)—(6) find identity of an operating sensor N}, such
that there are no operating sensors above Npigh = 2Njow. The
decision that there are no operating sensors above sensor [ is
achieved if k(!) consecutive sensors above it are not operating.
Steps (7)—(11) estimate the identity of the maximal operating
sensor using a binary search with a similar decision rule based
on k() consecutive nonoperating sensors. In Section III, we
will show that the probability that there is an operating sensor
above Npax is less than €/ Nmaxz. Moreover, the total proba-
bility of underestimating Ny, is less than e.
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TABLE 1
SECOND PHASE OF THE SEQUENTIAL POLLING PROTOCOL

(I) Foreach!=1,...,N define k(I) = a + blog,(l) where

_ losa(%5)
- logz(l—p%)
— —2logo(l

loga(1—po)

an

2) £=1.
(3) Poll sensor number £.
(4) If sensor /£ is active set £<—2¢ and goto step (3).
(5) If no answer is received set ug<—{ + k(£).
6) Fork=/¢+1,...,uy
if k=up+1
set me,(—%[, ]Vhigh<_e

else

Poll sensor k

if sensor k is operating

(answered received) set £<—2k and goto (3)
end

end
(7) If Nhigh - ]Vlow < k(]Vlow) gOtO (1 1)
(8) Set Z%% (Mow + ]vhigh)~
(9) Set ug<L + k(£).
(10) Fork=4,...,up+1
if k=wu,+1
set Nyion<—£, goto (7)
if  sensor k is operating
set Niow<—k, goto (7)

end
(11) For k = Nlowy e 7Nhigh
if sensor k is operating Nyow<k
end

III. ANALYSIS OF PSPP
A. Performance of Sequential Polling

In this section, we prove the following theorem.

Theorem 3.1: Assume that we have an unknown number of
sensors IV and that we know a priori that the probability of a
sensor to operate properly is greater than pg. Then, for every
€, there is a probabilistic protocol such that with probability
greater than 1 — ¢, it estimates the number of operating sensors
using Iq1(N) = O ((logy N)?) pollings and at most [y (N) =
2log, N up-link transmissions. Furthermore, the total number
of pollings grows linearly with log, € and log,(1 — pg).

Proof: Let pg be a lower bound on the probability of a
sensor to operate properly. Let &’ = 6¢/72 be given. For each /,
let k(1) be large enough so that

6’
(1—po)*® = o 1)

k(1) grows linearly with log, [ since
k(1) 1logy (1 — po) < log, e’ — log,(1%). 2)

Hence, k(l) = [(logy e’ — 2logy(l))/logy (1 — po)] is suffi-
cient so that k() = a + blog,(l). Note also that k() depends
linearly on log, € and 1/ log, (1 — pg), where

log, &’ b -2
Qa = —— = — -
log, (1 — po) log, (1 — po)

Claim 3.1: The probability of underestimating the identity
of the operating sensor with the largest identity number is less
than ¢ = 72’ /6.
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Proof: We use a union bound. The probability that we
have a sequence of k([) failed sensors beginning at sensor [ is
(1 — po)*® = &' /I2, by the choice of k(I). Hence, the proba-
bility of obtaining a negative answer at any step is bounded by

9 OOE TE
Prp<) 5<) m=—¢ =¢ 3)

Note also that for every [ satisfying [/2 < N < [, we certainly
get k(1) consecutive negative answers when beginning polling
sensor [, so the stopping of the algorithm is ensured.

We had at most log, N doubling steps (where sensor £
responded and we continued with polling sensor 2¢) before
polling a nonexisting sensor. After a jump occurred ({—2/) we
had at most k(2¢) pollings of consecutive sensors, which result
in no answer before a positive answer occurred (since other-
wise, the algorithm terminates prematurely. As shown in claim
3.1, this event occurs with a probability of less than ). Since
k(£) is monotonically increasing and for every m < log, N
we had at most one positive answer between 2™ and 2™ *! (a
positive answer implies an index doubling), the total number
of sensor polling during the first part of this phase Idl(l)(N ) is
bounded by

logo, N
La(N) < Y7 k™). )

m=1

Since k(2™) = a + bm, we obtain
(1) 1 1 2
I/ (N)< |a-— ib log, N + §b10g2 N. 5)

The number of sensor responses is bounded by Iul(l)(N ) <
logy, N. Now, we start a binary search for the maximum by
testing 31/4,...,3l/4 + k(3[/4) in a similar way. If all these
failed, we know that the maximum is between 3[/4 and [; oth-
erwise, we know that the maximum is between [/2 and 3[/4.
This process continues for log, N steps until the maximum is
exactly localized. The total number of pollings in this stage is
bounded by 15;'® (N) < (1/2)k(N) log, N; hence, the overall
number of polling 14 (V) is given by

Ia(N) = IgO(N) + IgP(N) < k(N)log,(N)
=2alog,(N) + b (log, N)*.

The total number of replies is bounded by
Iy(N) < 2log, N

since we have another log, (V) intervals with a single positive
answer at each interval until the maximum N, is found.

B. Estimating po

‘We now estimate the number of pollings that is necessary for
estimating po. To estimate the number of operations needed to
estimate pg, we use the following application of the Chernoff
bound [1].

Z?il p;. Assume that each X; is a random variable satisfying

Theorem 3.2: Let pi1,...,pp be given. p =

p(Xi=1-pi)=pi, p(Xi=-pi))=1-p; (6)

and let X = vail X;. Then
Pr(X >a)<e2/M (7

Note that each X is a centering of a Bernoulli random variable
with probability of success p;. In our context, we have p; =
p for all 7. The X;’s are obtained by subtracting p from the
replies (positive reply is 1, and no reply is 0), to obtain zero mean
random variables. Now, we can estimate p, using a sequential
sampling of the first M sensors. Using the above theorem, we
will evaluate how large M needs to be. The estimate of p, is
givenby p = (1/M)Y, where Y = S Vi, Vi = X; +p
is the result of polling sensor 7, and Y = X + pM is the total
number of positive replies. We want to estimate the probability
Pr(p > p+ 6). To that end, note that

R X
Pr(p>p+5p):Pr<M+p>p+5p)

=Pr(X > 6pM) < e 20P°M gy

This is true for any value of §, and the probability of overesti-
mating p by dp is exponentially decaying. To ensure that our p,
used for computing & (!) is indeed an underestimate, we can de-
fine p, by (1 — 3)p. In this case, we obtain

P =00 > ) =Pr (1= 937 + (=8> )

= Pr(X > BpM) < e~ 2000)°M — (g)

Hence, we make the probability of overestimating p, arbitrarily
small. Choosing M = K /p? and 3 = 1/+/2 will ensure that

Pr(ﬁo > p) < e_K.

Since we need e % < ¢, the proper choice of K is given by

K = —logye. (10)
This K is independent of NV and, hence, constitutes a constant
overhead in the algorithm.

After N,,.« has been obtained, we estimate the number of
sensors by N = PN max. We use Nmax as an estimate of V.
This is an underestimate, but the probability of underestimating
by k decays exponentially with k, i.e., there might truly be &
nonoperating sensors above V., but this occurs with proba-
bility P(N > Npax+x) < (1 —po)*/(1 — po). The error in
the estimation of the number of operating sensors now consists
of the error in estimating p. This decays with M the number of
samples used to estimate p. If we choose M = f(N), we obtain

— 1

N
PT‘(

No

S 5) — 9e— (59 F(N)
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More specifically, if we choose M = r(logy N/§%p?), we
obtain

2

P —.
i NG

—1|>6] =

Sz

If we want to make convergence more rapid, we can choose
M = (logy N)"/(pb?) and obtain

N 2
Pr E—l >6 :W.

This is a price paid for reducing the number of samples. We ob-
tain a rapidly converging estimator with a small number of total
transmissions; however, the convergence rate is subexponential.

IV. CONCLUSIONS

In this letter, we have presented a probabilistic algorithm
for estimating the number of operating sensors in a sensor
network. The probability of failure of the algorithm & affects
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the complexity linearly with log, &, so the probability of failure
can be made arbitrarily small at a low computational cost.
The algorithm requires O (log, N) up-link transmissions and
(0] ((log2 N )2) down-link transmissions (polling). We have also
demonstrated the tradeoffs between number of transmissions
and accuracy of the estimator.
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