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A Unified Framework for Score Normalization
Techniques Applied to Text Independent Speaker

Verification
Johnny Mariéthoz and Samy Bengio

Abstract— The purpose of this paper is to unify several of
the state-of-the-art score normalization techniques applied to
text-independent speaker verification systems. We propose a
new framework for this purpose. The two well-known Z- and
T-normalization techniques can be easily interpreted in this
framework as different ways to estimate score distributions. This
is useful as it helps to understand the various assumptions behind
these well-known score normalization techniques, and opens the
door for yet more complex solutions. Finally, some experiments
on the Switchboard database are performed in order to illustrate
the validity of the new proposed framework.

Index Terms— speaker verification, score normalization, sta-
tistical framework, T-norm, Z-norm.
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I. INTRODUCTION

Text-independent speaker verification systems have evolved
through time [1]. The first systems had reasonable perfor-
mance only in controlled conditions (no noise, same channel,
same gender, etc). Over the years, researchers have improved
their systems for unmatched conditions, thanks largely to
score normalization techniques. In this paper, we propose a
unified framework that explains several score normalization
techniques used in text-independent speaker verification. Fur-
thermore, an implementation of two of the most common tech-
niques, the so-called T- and Z-normalization [2], is proposed
here in this novel framework. While the two approaches are not
strictly equivalent, in practice they give similar results. In fact,
this new framework can be used to understand the assumptions
that are implicit when using T- and Z-normalization. Moreover,
it can also used to develop new normalization techniques. The
paper is organized as follows. In section II we present the
classical framework used in speaker verification. In section III
a new framework is proposed for score normalization. T- and
Z-norm implementations in this framework are then given in
sections IV-A and IV-B. Sections V and VIII show that the T-
and Z-norm using this new framework are equivalent to their
classical implementation. Finally we draw some conclusions.

II. CLASSICAL FRAMEWORK USED IN SPEAKER

VERIFICATION

Classical speaker verification models are based on a statis-
tical framework. We are interested in P (Si|X) the probability
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that speaker Si has pronounced sentence X. Using Bayes
theorem, this can be expressed as follows:

P (Si|X) =
p(X|Si)P (Si)

p(X)
. (1)

In order to decide whether or not Si has pronounced X, we
compare P (Si|X) to the probability that any other speaker has
pronounced X, denoted P (S̄i|X). When P (S̄i|X) is the same
for all Clients, which is the assumption made in this paper,
we replace it by a speaker independent model P (Ω|X) where
Ω represents the World of all the speakers. The decision rule
is then:

if P (Si|X) > P (Ω|X) then X was uttered by Si. (2)

Using equation (1), inequality (2) can be rewritten as:

p(X|Si)

p(X|Ω)
>

P (Ω)

P (Si)
= δi (3)

where the ratio of the prior probabilities is usually replaced
by a threshold δi since it does not depend on X and is
furthermore usually common for all speakers (hence δ). Taking
the logarithm of (3) leads to the log likelihood ratio (LLR):

llri = log
p(X|Si)

p(X|Ω)
> log δi = ∆i ≈ ∆ . (4)

III. UNIFIED FRAMEWORK FOR SCORE NORMALIZATION

Most state-of-the-art text-independent speaker verification
systems use linear score normalization functions of the form:

llrinorm
=

llri − µ

σ
> ∆ (5)

where µ and σ are respectively the mean and the standard
deviation of a normal distribution of LLRs. These parameters
are then estimated differently for each type of score normal-
izations. This paper proposes a unified framework for all kinds
of normalization of the form of (5), and also other non-linear
functions. We further propose an implementation for the two
well-known T- and Z-normalization techniques.

We have seen that in text-independent speaker verification
we are interested in the probability that a speaker Si has
pronounced a sentence X. Let us now consider the LLR as
an additional random variable, and let us introduce it in the
original framework by looking at P (Si|X, llri), the probability
that a speaker Si has pronounced a sentence X and obtained
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an LLR of llri. Using the same approach as in section II, we
obtain:

P (Si|llri, X) > P (Ω|llri, X). (6)

Using inequality (6) and the Bayes theorem, it can then be
rewritten as:

p(llri, X|Si)
P (Si)

p(llri, X)
> p(llri, X|Ω)

P (Ω)

p(llri, X)
. (7)

Applying some simplifications to inequality (7) yields:

p(llri, X|Si)

p(llri, X|Ω)
>

P (Ω)

P (Si)
. (8)

Using inequality (8) and the conditional law of probabilities
gives:

p(llri|X, Si)

p(llri|X,Ω)

p(X|Si)

p(X|Ω)
>

P (Ω)

P (Si)
. (9)

Taking the logarithm of inequality (9), we finally obtain:

llr′i = log
p(llri|X, Si)

p(llri|X,Ω)
+ llri > log

P (Ω)

P (Si)
≈ ∆ . (10)

Comparing equation (10) of this new framework with the
original equation (4), we can see that a new term appears. It is
the log of the ratio of two likelihoods estimated by two score
distributions. The numerator represents the distribution of
LLRs for a given access X and for client Si. The denominator
represents the distribution of LLRs for a given access X and
for all impostors Ω. We will see that, depending on how these
two distributions are estimated, we can obtain classical score
normalization techniques such as T-norm (when estimated on
a test access) or Z-norm (when estimated for each client Si).

IV. RELATION TO EXISTING NORMALIZATION

TECHNIQUES

A. T-norm

The T-norm, as introduced in [2] and [3], estimates µ and
σ as the mean and the standard deviation of the log likelihood
ratios (LLRs) using models of a subset of impostors, for a
particular test access X0.

µN =
1

N

∑

n

llrn(X0) (11)

σN =

√

1

N

∑

n

(llrn(X0) − µN )2 (12)

where N is the number of impostor models and llrn is the
score for the nth impostor model for the particular access X0.
Using (5) we obtain:

llrit−norm
=

llri − µN

σN

> ∆ . (13)

Let us now show how it is possible to perform T-
normalization using our new framework under reasonable
assumptions. We also show in the Appendix a comparison of
our framework and the T-norm implementation found in the
literature.

Given the framework described in section III, we must
define two distributions, which will be here defined as Normal,
as follows:

p̂(llr|X, Si) = N (llrSi
;µSi

, σSi
) (14)

p̂(llr|X,Ω) = N (llrSi
;µΩ, σΩ) (15)

where µSi
, σSi

are the parameters of the client distribution
and µΩ, σΩ are the parameters of the impostor distribution. To
obtain the T-norm we make the assumption that the standard
deviations are equal: σN = σSi

= σΩ. We thus obtain:

log
p̂(llr|X, Si)

p̂(llr|X,Ω)
= − 1

2σ2

N

(

(llrSi
− µSi

)2 − (llrSi
− µΩ)2

)

− log

√

2πσ2

N
√

2πσ2

N

=
µSi

− µΩ

σ2

N

(

llrSi
− µSi

+ µΩ

2

)

. (16)

If we now define the means as:

µSi
= llrSi

µΩ = µN (17)

we obtain

llrSi
+

(llrSi
− µN )2

2σ2

N

> ∆ . (18)

Note that equations (17) and (18) are valid only when llrSi
>

µN . A reasonable thing to do is to reject directly without any
normalization a claimed speaker if its obtained LLR is smaller
than the average of LLRs over a subset of impostors. The
consequence of this on the T-norm equation is to force the
threshold ∆ in (13) to be positive.

B. Z-norm

The basis of Z-norm [2] is to test a speaker model against
example impostor utterances and to use the corresponding
LLR scores to estimate a speaker specific mean and standard
deviation:

µJ =
1

J

∑

j

llrSi
(Xj) (19)

σJ =

√

1

J

∑

j

(llrSi
(Xj) − µJ)2 (20)

where J is the number of impostor accesses. Using a similar
approach to that in section IV-A, the estimate of the two distri-
butions needed for the proposed unified framework becomes:

p̂(llr|X, Si) = N (llrSi
;µSi

, σSi
) (21)

p̂(llr|X,Ω) = N (llrSi
;µΩ, σΩ) (22)

with, again, the same standard deviation, σJ = σSi
= σΩ. If

we now define the means as follows:

µSi
= llrSi

µΩ = µJ (23)

then using equations (23) and (16) we obtain:

llrSi
+

(llrSi
− µJ)2

2σ2

J

> ∆ . (24)
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Finally, as explained for the T-norm at the end of section IV-
A, we also need to reject a claimed access if (llrSi

< µJ).

V. EXPERIMENTS

The goal of these experiments is to show that the proposed
framework can indeed be used to perform T-norm or Z-norm
while obtaining the same performance as the original methods,
and, gaining some insight about the underlying assumptions.

A. Performance Measure in Speaker Verification

The performance of a speaker verification system is usu-
ally represented in terms of false acceptance rate (FAR,
the number of false acceptances divided by the number of
impostor accesses) and false rejection rate (FRR, the number
of false rejections divided by the number of client accesses).
A summary of these two values is often given by the half
total error rate (HTER, the average of FAR and FRR), or
by the equal error rate (EER, the point where FAR is equal
to FRR1). It is also possible to represent graphically the
performance using DET curves [4] which, similarly to ROC
curves, show FAR with respect to FRR for various values
of the threshold of equation (4), but with a Normal scale
transformation. More recently, a new Expected Performance
Curve (EPC) has been proposed by [5], which has shown to
provide a fairer comparison between models. The procedure
optimizes a convex combination of the individual performance
measures, ep = αFAR + (1− α)FRR, for various values of
α ∈ [0, 1] on the validation set during the training procedure
used for parameter selection, and then plots HTER on the test
set as a function of α. In this way, each point on the graph
contains its underlying a priori threshold selection procedure
and is thus comparable to similar points (same α) coming from
other models. Thus, this curve can be seen as an a priori DET
curve.

B. Database and Protocol

The comparison was done on a subset of the database that
was used for the NIST 2000 Speaker Recognition Evaluation,
which comes from the Switchboard-2 Phase 1 and 2 Corpus
collected by the Linguistic Data Consortium. This data was
used as an evaluation set while the World model and the
development data come from previous NIST campaigns. While
in the original database two different handsets were used
(carbon and electret), in the subset selected for this paper, we
only used data from electret handsets. This protocol was first
proposed by the ELISA consortium as a reference for the NIST
2001 evaluation. We separated the data into male and female
data, in order to create two different World models. The male
World model was trained on 137 speakers for a total of 1.5
hours of speech, while the female World model was trained
on 218 speakers for a total of 3 hours of speech. After that,
the two World models were merged: the new World model
has the same mean and variance vectors as the concatenation
of the two gender dependent World models and the weights

1Note that EER is an a posteriori measure in the sense that the underlying
threshold is necessarily chosen on the test set.

Fig. 1. DET curves on the NIST 2000 evaluation set for the T-norm and
unified framework T-norm systems.

Fig. 2. EPC curves on the NIST 2000 evaluation set for the T-norm and
unified framework T-norm systems.

are normalized in order to satisfy the constraint that they
should sum to 1. For both development and evaluation Clients,
approximately 2 minutes of telephone speech were used to
train the models and each test access was less than 1 minute
long. The development population consisted of 45 males, with
417 males in the evaluation set. The total number of accesses
in the development population was 2441 and 27893 for the
evaluation population with a proportion of 10% of true target
accesses.

C. Experimental Results

To verify the validity of our framework and the underly-
ing assumptions, we first compared the standard Z- and T-
normalizations and the version derived from the proposed
framework. Figure 1 and 3 present the results using DET
curves since these curves are often used in the literature.
Unfortunately, as explained in section V-A, DET curves do
not take into account the threshold estimation procedure. We
thus also present results using EPC in Figure 2 and 4. In both
cases the two curves match each other. These results show that
the two approaches are equivalent. 2

2In fact they are perfectly equal if we remove llrSi
in equation (18) and (24).
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Fig. 3. DET curves on the NIST 2000 evaluation set for the Z-norm and
unified framework Z-norm systems.

Fig. 4. EPC curves on the NIST 2000 evaluation set for the Z-norm and
unified framework Z-norm systems.

VI. CONCLUSION

In this paper, we have presented a new unified framework
for text-independent speaker verification score normalization
techniques. We have shown that the T- and Z-normalizations
can be formalized using this new framework. Theoretical
and empirical results show that the implementation found
in the literature for T- and Z-norm are equivalent to our
implementation. This helps to interpret T- and Z-norm as a way
to estimate score distributions using two Normal distributions
with the same variance. These normalization techniques have
a very simple form in this framework and we can thus
hope to find an even better estimate of LLR distributions.
Indeed, there is no reason to force the LLR distribution to be
Normally distributed, as done for the T- and Z-norm. Using
our framework it is possible to approximate these distributions
using more complex models, such as Mixtures of Gaussians
for example. We hope that this framework will be used to
propose new score normalization methods and also to improve
understanding of this type of algorithms.
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VIII. APPENDIX

In this Appendix, we show the difference between the T-
norm implementation found in the literature and our imple-
mentation using a unified framework. This demonstration can
also be applied to Z-normalization.

The new implementation is given by:

llrSi
+

(llrSi
− µN )2

2σ2

N

> ∆ (25)

The classical method to implement T-norm is equivalent to
the second term of the left side of equation (25) since:

(llrSi
− µN )2

2σ2

N

> Θ

(llrSi
− µN )2 > Θ ∗ 2σ2

N

(llrSi
− µN )2 − 2Θ ∗ σ2

N > 0
[

(llrSi
− µN −

√
2Θ ∗ σN )

· (llrSi
− µN +

√
2Θ ∗ σN )

]

> 0 (26)

and if llrSi
> µN then we can simplify (26) further into:

llrSi
− µN −

√
2Θ ∗ σN > 0

llrSi
− µN

σN

>
√

2Θ . (27)

This inequation has a real solution only when Θ > 0, which
is true if llrSi

> µN . This assumption is reasonable: we do
not want to accept an access if the LLR on the client model
is smaller than the average LLR obtained over a subset of
impostors. Given this reasonable assumption we can see the
standard T-norm as a simplification of the T-norm using our
new unified framework.
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