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Semidefinite Relaxation for Detection of 16-QAM
Signaling in MIMO Channels
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Abstract—We develop a computationally efficient approxima-
tion of the maximum likelihood (ML) detector for 16 quadra-
ture amplitude modulation (16-QAM) in multiple-input mul-
tiple-output (MIMO) systems. The detector is based on a convex
relaxation of the ML problem. The resulting optimization is a
semidefinite program that can be solved in polynomial time with
respect to the number of inputs in the system. Simulation results
in a random MIMO system show that the proposed algorithm
outperforms the conventional decorrelator detector by about 2.5
dB at high signal-to-noise ratios.

Index Terms—Maximum likelihood detection, MIMO systems,
semidefinite relaxation.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) systems
arise in many modern communication channels, such as

multiple user communication and multiple antennas channels.
It is well known that the use of multiple transmit and receive
antennas promises substantial performance gains when com-
pared to traditional single antenna systems. In order to exploit
these gains, the system must be able to efficiently detect the
transmitted symbols at the receiver. Hence, detection in MIMO
systems is one of the fundamental problems in state-of-the-art
communication systems.

The optimal algorithm in the sense of minimum joint proba-
bility of error for detecting all the symbols simultaneously is
the maximum likelihood (ML) detector [1]. It can be imple-
mented using a brute-force search over all of the possible trans-
mitted vectors or using more efficient search algorithms, e.g.,
the sphere decoder [2]. However, it has been shown that even
when the sphere decoder is used, the expected computational
complexity is exponential and impractical for many applica-
tions [3]. Consequently, there has been much interest in imple-
menting suboptimal detection algorithms. The most common
suboptimal detectors are the linear receivers, i.e., the matched
filter (MF), the decorrelator or zero forcing (ZF), and the min-
imum mean-squared error (MMSE) detectors. More advanced
detectors are based on decision feedback equalization (DFE).
There are dozens of other suboptimal detection schemes ranging
from lattice-based algorithms, alternating variable methods, to
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expectation maximization and many more (see [1], [4], and ref-
erences within).

One of the most promising suboptimal detection strategies
is the semidefinite relaxation (SDR) detector, which recently
gained considerable attention [4]–[11]. The main reason for the
high computational complexity of the ML detector is due to the
fact that it is a non convex optimization problem. SDR is an
attempt to approximate it using a convex program that can be
efficiently solved in polynomial time. There are two approaches
for deriving the SDR. The first approach is to formulate the ML
problem in a higher dimension and then relax the nonconvex
constraints. Alternatively, the SDR detector can be derived as
the Lagrange bidual of the ML optimization problem, i.e., the
dual program of the dual of the ML problem (e.g., [12, Exer-
cise 5.39]). The resulting SDR in both of these approaches is a
semidefinite program (SDP) for which there are efficient solu-
tions that can be obtained in polynomial time [13].

Initially, the SDR was proposed for detection of bi-
nary/quadratic phase shift keying (BPSK/QPSK) constellations
[4]–[6]. In this simple signaling scheme, simulation results
show that the SDR provides near-ML performance [5]. Con-
ditions for the tightness of the SDR in the case of BPSK were
derived in [7]. These suggest that at high signal-to-noise ratios
(SNRs), there is a high probability that SDR will yield the true
ML decision. Other results that motivate the use of the SDR
show that many of the other conventional detectors, such as the
MMSE, are relaxations of the SDR and are, therefore, inferior
(at least before the discretization) [5]. There are many works
on practical low-complexity implementations of the SDR algo-
rithm that are suitable for MIMO channels with a large number
of multiple inputs [6], [9], [10]. Another important feature of
the SDR is that its solution can be easily modified to provide
soft decisions as required in state-of-the-art communication
systems [8].

The success of the SDR in demodulating BPSK signaling mo-
tivated its generalization to higher constellations. In [10] and
[11], the SDR was generalized to the detection of -phase shift
keying ( -PSK) signaling. In our letter, we propose to extend
these works to the detection of other constellations used in dig-
ital communications. The key observation is that any finite al-
phabet constraint can be replaced by a polynomial constraint,
e.g., if , then . Next,
by introducing slack variables, the high-order polynomial con-
straint can be replaced by multiple quadratic constraints. These
constraints can be convexified by either reformulating them in
a higher dimension and relaxing or by deriving the Lagrange
bidual. For simplicity, we restrict ourselves to the well-used 16
quadrature amplitude modulation (16-QAM) constellation set.
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The same general approach can be followed for other constella-
tions.

The letter is organized as follows. In Section II, we intro-
duce the 16-QAM detection problem in MIMO channels and
review the well known ML detector. In Section III, we derive
the 16-QAM SDR detector based on rank relaxation. An alter-
native derivation based on the Lagrange bidual is provided in
Section IV. The advantage of the SDR detector is demonstrated
in Section V using computer simulations. Finally, in Section VI,
we provide concluding remarks.

The following notation is used. Boldface uppercase letters de-
note matrices, boldface lowercase letters denote column vectors,
and standard lowercase letters denote scalars. The superscript

denotes the transpose. denotes the th element of the
vector . By Diag , we denote a diagonal matrix with
being the ( th, th) element, by diag , we denote the vector
comprised of the diagonal elements of the matrix , by , we
denote the identity matrix, and by , we denote the vector of
ones. and denote the real part and the imaginary
part, respectively. Tr denotes the trace operator, and de-
notes the standard Euclidean norm. Finally, means that
the matrix is a Hermitian positive semidefinite matrix.

II. 16-QAM ML DETECTION

Consider the standard MIMO channel

(1)

where is the received signal of length , is an
channel matrix, is the length vector of transmitted symbols,
and is a length complex normal zero-mean noise vector
with covariance . The symbols of belong to some known
complex constellation. In this letter, we consider the 16-QAM
constellation, i.e., the real part and the imaginary part of for

belong to the set .
In order to avoid the need to handle complex-valued variables,

it is customary to use the following decoupled model:

(2)

where

(3)

Using these definitions, the ML detector of the transmitted sym-
bols is

(4a)
ML

s.t. (4b)

The program ML is a combinatorial problem and can be
solved in a brute-force fashion by searching over all of the

possibilities. Clearly, as increases, this option
becomes impractical. In the next section, we propose an ap-
proximate solution to the problem via semidefinite relaxation.

III. SDR VIA RANK RELAXATION

The key observation that leads to the SDR is that the con-
straint for can be expressed as

(5)

Introducing the slack variables for , we
can use (5) to rewrite the problem ML as

(6a)

s.t. (6b)

(6c)

The next step in deriving the SDR is formulating the
optimization problem in a higher dimension. We re-
place the vectors and with a rank-one semidefi-
nite matrix , where .
Using this change of variables, we can easily identify

and ,
where , for , 2, 3, are the th sub-blocks of
of appropriate sizes. Therefore, problem (6) is equivalent to

Tr (7a)

s.t. diag (7b)

diag (7c)

(7d)

(7e)

rank (7f)

The program (7) is not convex because of the rank-one con-
straint. Dropping this constraint results in the SDR

Tr (8a)

s.t. diag (8b)
SDR

diag (8c)

(8d)

(8e)

Note that the SDR has a linear objective subject to affine equal-
ities and a linear matrix inequality. Such problems are known as
SDP and can be efficiently solved in polynomial time [13], [14].

If the optimal argument of SDR has rank one, then the
relaxation is tight, and the ML solution of is the first el-
ements of the last column of . Otherwise, SDR is only an
approximation of ML, and there is no strict relation between
and . Instead, there are a few standard techniques for approxi-
mating based on [10]:

• Simple quantization:

quantize (9)

where quantize rounds to the nearest element in
the set { }.
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• Eigenvalue decomposition: Let denote the eigen-
vector of

(10)

associated with its maximal eigenvalue. Then

quantize (11)

• Randomization: Let be the Cholesky
factorization of from (10), and denote the columns
of by . Then

quantize (12)

where is a random vector uniformly distributed on
a -dimensional unit sphere. In order to im-
prove the approximation quality, the randomization is
repeated a number of times, and the solution yielding
the best objective value is chosen.

It is important to note that the above discretization methods are
purely ad hoc. One may definitely derive other and maybe better
methods. For example, by taking into account the constraints
(8b) and (8c) and using some least-squares procedure, one can
improve the quantization step. However, such methods are out-
side the scope of this letter.

IV. SDR AS THE LAGRANGE BIDUAL PROGRAM

In the previous section, we derived the SDR by relaxing the
nonconvex rank-one constraint. There is no rigorous mathemat-
ical justification or any sort of optimality associated with this
relaxation. In this section, we show that the resulting SDR is, in
fact, the Lagrange bidual of (6). For any optimization problem
(not necessarily convex), there is a convex Lagrange dual pro-
gram. The optimal value of the dual program is a bound on the
optimal value of the original program. If the original problem
was convex, then the bidual is usually the original problem it-
self (or a very similar problem with some change of variables).
In nonconvex programs, the bidual cannot be exactly the orig-
inal problem, since it is always a convex program. Therefore, the
bidual is considered as a standard technique to convexify non-
convex problems. We now prove that the bidual of (6) results in
the same SDR of (8).

The Lagrangian associated with program (6) is

(13)

By introducing

Diag
Diag

(14)

the Lagrangian is a quadratic form in

(15)

The dual program of (6) is defined as

(16)
Adding a slack variable yields

(17a)

s.t.

(17b)

We now rely on the following well-known lemma.
Lemma 1: [13, p. 163] Let be a symmetric matrix. The

condition holds for all if and only if

the matrix is semidefinite positive.

Due to the lemma, the dual program can be expressed as

(18a)

s.t. (18b)

We now derive the dual of the dual program. The Lagrangian
associated with program is

Tr

diag

diag

Tr (19)

Linear terms are bounded from below only if they are identically
zero. Therefore, the dual of (18) [which is also the bidual of (6)]
is

Tr (20a)

s.t. diag (20b)

DD diag

(20c)

(20d)

(20e)

which is identical to the SDR of (8).

V. SIMULATION RESULTS

In this section, we demonstrate the power of the SDR detector
in an MIMO system using computer simulations. In our first
simulation, we considered an MIMO system with inputs
and outputs using 16-QAM signaling. The entries of
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Fig. 1. Message error rates of a random MIMO system withK = 6 andN =

12 using 16-QAM.

the MIMO channel were chosen as independent and identically
distributed, zero-mean, complex normal random variables. For
each SNR, we used up to 50 000 Monte Carlo simulations in
order to estimate the average probability of error in detecting
the message vector. The three versions of the SDR detector pre-
sented in Section III were considered, where the randomization
technique was implemented using 50 independent randomiza-
tions. The semidefinite program in the SDR was solved using
the SeDuMi package [14]. For comparison, we also simulated
the conventional linear ZF detector. The results are provided in
Fig. 1. It is easy to see the advantage of the SDR detectors over
the ZF detector. Among the SDR detectors, the randomization
strategy is superior to the other two techniques, which perform
roughly the same. Using this method, SDR gains up to 2.5 dB
in high SNR when compared to the ZF strategy.

In the first simulation, we did not compare the perfor-
mance of the SDR with that of the ML detector. This was
due to the large number of possible vectors in the ML search
( vectors). Therefore, in our second simu-
lation, we consider a smaller system where a full ML search
is possible. In particular, we used and , i.e.,

vectors in the ML search. The rest of the pa-
rameters are as in the first simulation. The results are provided
in Fig. 2. As before, the SDR detector outperforms the ZF de-
tector. Unfortunately, it can be observed that unlike the reported
performance of the SDR in BPSK systems, in 16-QAM, the
ML detector is still considerably better than the SDR detector.

VI. CONCLUSION

In this letter, we derived the SDR of the ML detector for
16-QAM signaling over MIMO channels. Previously, the SDR
was constrained to the detection of PSK signaling. Our approach
shows that other digital constellations, such as QAM, can also
be addressed using SDR by formulating the constraints set as
multiple quadratic constraints and relaxing. Therefore, we find

Fig. 2. Message error rates of a random MIMO system withK = 4 andN =

8 using 16-QAM in comparison to the ML detector.

the computationally efficient SDR detector as a competitive de-
tector in comparison to other suboptimal methods.
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