
The Redundant Discrete Wavelet Transform and
Additive Noise

James E. Fowler, Senior Member, IEEE

Abstract— The behavior under additive noise of the redundant
discrete wavelet transform (RDWT), a frame expansion that is
essentially an undecimated discrete wavelet transform, is studied.
Known prior results in the form of inequalities bound distortion
energy in the original signal domain from additive noise in
frame-expansion coefficients. In this paper, a precise relationship
between RDWT-domain and original-signal-domain distortion for
additive white noise in the RDWT domain is derived.

Index Terms— redundant wavelet transform, frame expansion,
additive noise

I. INTRODUCTION

It is often necessary to calculate distortion energy in the
original signal domain from an equivalent quantity in the
domain of a linear transform. That way, signal-processing
operations can be performed in the transform domain with
known effects in the original signal domain. For this reason,
orthonormal sets are widely used, since, when the transform
takes the form of an expansion using an orthonormal basis,
Parseval’s theorem guarantees

∥∥x
∥∥2

=
∥∥X
∥∥2, or that the

energy of the original signal x in a Hilbert space can be
determined from that of its transform X .

However, the constraints of orthonormal expansion sets
can sometimes be too restrictive for some signal-processing
applications. When one widens consideration to more general
expansions, the increased functionality and flexibility often
come at the cost of an exact energy relationship as above.
Instead, one often has merely a bounding relationship in the
form of

A
∥∥x
∥∥2 ≤

∥∥X
∥∥2 ≤ B

∥∥x
∥∥2 (1)

that frames the energy in one domain with respect to that
of the other domain for some constants A > 0 and B <
∞. Expansions with such energy bounds are hence known as
frame expansions.

One of the key benefits of the generality of a frame
expansion lies in the robustness of the dual-frame, or pseudo-
inverse, frame reconstruction to added noise. Goyal et al. [1]
show that, given a frame Ψ = {ψn} ⊂ CN with

∥∥ψn
∥∥2

= 1

and its dual Ψ̃ = {ψ̃n}, zero-mean white noise X ∈ CM
satisfies

1

B2
E
[∥∥X

∥∥2
]
≤ E

[∥∥x
∥∥2
]
≤ 1

A2
E
[∥∥X

∥∥2
]
, (2)
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where x =
∑
nX[n]ψ̃n is the dual-frame reconstruction of

X . If the frame is redundant (i.e., M > N ), then A > 1 [2].
In this case, less noise energy will result in the original signal
domain from added noise in the domain of the redundant frame
expansion.

In this paper, we focus on a specific redundant frame
expansion known as the redundant discrete wavelet transform
(RDWT), which is essentially an undecimated version of
the discrete wavelet transform (DWT) ubiquitous to modern
signal-processing applications. Since it is a frame expansion,
the RDWT has energy bounds as in (1). As the initial contri-
bution of this paper, we determine values for the frame-bound
constants A and B assuming that an orthonormal filter pair
underlies the RDWT. Then, as the primary contribution of
this paper, we analyze the performance of the RDWT under
additive noise. We find that, even though the RDWT is a
highly redundant frame expansion, we can determine exactly
the variance (i.e., expected distortion energy per sample) in
the original signal domain of white noise added in the RDWT
domain. Despite extensive use of the RDWT in prior signal-
processing applications, the frame-bound and noise-analysis
results we present here are apparently new as we are unaware
of their appearance in any prior literature.

The remainder of this paper is organized as follows. First,
in Sec. II, we briefly overview the RDWT. The main contribu-
tions of the paper follow in Sec. III wherein we derive frame
bounds for the RDWT, and in Sec. IV wherein we investigate
the noise performance of the RDWT. Finally, we make some
concluding remarks in Sec. V.

II. THE REDUNDANT DISCRETE WAVELET TRANSFORM

The RDWT1 has a long history, having been independently
discovered a number of times and given a number of different
names, including the algorithme à trous [4, 5], the undeci-
mated DWT (UDWT) [6], the overcomplete DWT (ODWT)
[7], the shift-invariant DWT (SIDWT) [8], and discrete wavelet
frames (DWF) [9]. There are several ways to implement the
RDWT, and several ways to represent the resulting overcom-
plete set of coefficients. The original implementation was
in form of the algorithme à trous [4, 5], which, in essence,
removes the downsampling operator from the usual implemen-
tation of the DWT. In this implementation, instead of signal
downsampling, the filter responses themselves are upsampled,
thereby inserting “holes” (trous in French) between nonzero
filter taps.

Let h ∈ `2(Z) and g ∈ `2(Z) be the scaling and wavelet
filters, respectively, of an orthonormal DWT. The RDWT

1Our use of the “RDWT” moniker is from [3].
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scaling filter at scale j + 1 is defined recursively as

hj+1[k] = hj [k] ↑ 2 =

{
hj [k/2], k even,
0, k odd,

(3)

where h0[k] = h[k]. The wavelet filters gj [k] are defined
similarly. The RDWT of x ∈ `2(Z) is then implemented
recursively with the filter-bank operations

cj+1[k] = hj [−k] ∗ cj [k], (4)
dj+1[k] = gj [−k] ∗ cj [k], (5)

where c0 = x and j = 0, . . . , J − 1. The J-scale RDWT is
X(J) = RDWTJ

[
x
]

=
[
cJ dJ · · · d1

]
such that

∥∥X(J)
∥∥2

=
∥∥cJ
∥∥2

+

J∑

j=1

∥∥dj
∥∥2
. (6)

In the frequency domain, we have ĥj(ω) = ĥ0

(
2jω
)
, ĝj(ω) =

ĝ0

(
2jω
)
,

ĉj(ω) =

[
j−1∏

λ=0

ĥ∗0(2λω)

]
x̂(ω), (7)

d̂j(ω) = ĝ∗0
(
2j−1ω

)
[
j−2∏

λ=0

ĥ∗0(2λω)

]
x̂(ω), (8)

and, since the filters h and g are orthonormal,

1

2π

∫ π

−π

∣∣∣∣∣

j−1∏

λ=0

ĥ0(2λω)

∣∣∣∣∣

2

dω = 1, (9)

1

2π

∫ π

−π

∣∣∣∣∣ĝ0

(
2j−1ω

) j−2∏

λ=0

ĥ0(2λω)

∣∣∣∣∣ dω = 1 (10)

(see Sec. 7.3.3 of [2]). In order to reconstruct x in the
original signal domain given X(J) in the RDWT domain, one
recursively performs the synthesis operation,

cj [k] =
1

2

(
hj [k] ∗ cj+1[k] + gj [k] ∗ dj+1[k]

)
. (11)

The RDWT is a frame expansion, a fact we will verify
below by calculating its frame bounds. The à trous synthesis
procedure of (11) is the dual-frame reconstruction for this
frame.

We note that an alternative implementation of the RDWT
was independently proposed by Shensa [10] and Beylkin [11].
In essence, this implementation employs filtering and down-
sampling as in the usual critically sampled DWT; however,
all “phases” of downsampled coefficients are retained and
arranged as “children” of the signal that was decomposed.
The process is repeated on all the lowpass bands to achieve
multiple decomposition scales that form a “tree” of decompo-
sitions. Although this alternative tree-based RDWT is a useful
and common implementation in practice, we will focus on the
à trous implementation here since it is much more amenable
to mathematical analysis and derivation, a characteristic we
exploit as we study the noise properties of the RDWT in the
next section.

III. FRAME BOUNDS OF THE RDWT
Lemma 1 A single-scale RDWT operating in `2(Z) is a tight-
frame expansion with frame bounds A = B = 2.

Proof : See Example 5.2 of [12].

Lemma 2 If X(J) is the J-scale RDWT of x ∈ `2(Z), then
∥∥X(J)

∥∥2
=
∥∥cJ−1

∥∥2
+
∥∥X(J−1)

∥∥2
. (12)

Proof : See App. I.

Theorem 1 A J-scale RDWT operating in `2(Z) is a frame
expansion with frame bounds A = 2 and B = 2J .

Proof : By the definition of a frame, it is sufficient to show
that the frame bounds exist to show that the RDWT is a frame.
To establish frame bounds, we use a proof by induction. The
inductive basis is given by Lemma 1. The inductive step is as
follows. Suppose that for J ≥ 2, we have

2
∥∥x
∥∥2 ≤

∥∥X(J−1)
∥∥2 ≤ 2J−1

∥∥x
∥∥2 (13)

for X(J−1) =
[
cJ−1 dJ−1 dJ−2 · · · d1

]
, the (J − 1)-

scale RDWT of x. Then, for the J-scale RDWT, we have from
Lemma 2 and (13),

∥∥X(J)
∥∥2

=
∥∥cJ−1

∥∥2
+
∥∥X(J−1)

∥∥2 ≥∥∥X(J−1)
∥∥2 ≥ 2

∥∥x
∥∥2, which establishes inductively that the

lower bound satisfies A ≥ 2.
For the upper bound, we note that, from (6) and (13), we

have
∥∥cJ−1

∥∥2
=
∥∥X(J−1)

∥∥2 − ∑J−1
j=1

∥∥dj
∥∥2 ≤ 2J−1

∥∥x
∥∥2.

From Lemma 2 and (13) we then have
∥∥X(J)

∥∥2
=
∥∥cJ−1

∥∥2
+∥∥X(J−1)

∥∥2 ≤ 2J−1
∥∥x
∥∥2

+ 2J−1
∥∥x
∥∥2

= 2J
∥∥x
∥∥2, which

establishes that the upper bound satisfies

B ≤ 2J . (14)

In App. II, we show that the bounds of A = 2 and B = 2J are
the tightest possible frame bounds since we can find sequences
x ∈ `2(Z) that asymptotically meet these bounds.

IV. ADDITIVE NOISE IN THE RDWT DOMAIN

In this section, we consider zero-mean, white-noise signals
X in the RDWT domain, such that E

[
X[n]

]
= 0 and

E
[
X[n]X∗[m]

]
= σ2 for n = m and 0 otherwise. With the

following theorems, we establish the effect of RDWT synthesis
on this noise; we note that a similar procedure was used in
[13] to analyze the critically sampled DWT. Throughout, C∞
denotes the space of infinite-dimensional sequences.

Theorem 2 Suppose we have X(J) taking value in C∞ such
that X(J) =

[
cJ dJ · · · d1

]
. Suppose a single subband

of X(J) consists of zero-mean white noise of variance σ2 while
all the other subbands are zero. Then, the reconstruction x due
to the à trous synthesis algorithm of (11) is zero-mean noise
with variance

E
[∣∣x[k]

∣∣2
]

=
σ2

4j
, (15)

where j is the scale of the subband in which the noise resides.

Proof : Establishing that x has zero mean is straightforward,
so we will focus on the variance. The noise in X will be in
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either cj or dj while all the other subbands are zero. Let us
consider first the case that noise is in cj . Consequently, we
have from (11),

x[k] = c0[k] =

(
1

2

)j
h0[k]∗h1[k]∗· · ·∗hj−1[k]∗cj [k]. (16)

The power spectral density of the output of the synthesis
operation will be

Sx(ω) =
σ2

4j

∣∣∣∣∣

j−1∏

λ=0

ĥ0(2λω)

∣∣∣∣∣

2

, (17)

since the power spectral density of cj is σ2, and ĥj(ω) =

ĥ0(2jω). Invoking (9), we have that the variance of x is then

E
[∣∣x[k]

∣∣2
]

=
1

2π

∫ π

−π
Sx(ω) dω =

σ2

4j
. (18)

For dj , the proof is similar. In this case, we have from (11),

x[k] =

(
1

2

)j
h0[k]∗h1[k]∗· · ·∗hj−2[k]∗gj−1[k]∗dj [k], (19)

while the power spectral density is

Sx(ω) =
σ2

4j

∣∣∣∣∣ĝ0(2j−1ω)

j−2∏

λ=0

ĥ0(2λω)

∣∣∣∣∣

2

. (20)

Invoking (10), we have that the variance of x is then

E
[∣∣x[k]

∣∣2
]

=
1

2π

∫ π

−π
Sx(ω) dω =

σ2

4j
. (21)

Theorem 3 Suppose X(J) taking value in C∞ is a zero-
mean, white-noise signal with variance σ2. That is, suppose
that the noise coefficients are mutually uncorrelated between
subbands. Then, the reconstruction x from (11) is zero-mean
noise with variance

E
[∣∣x[k]

∣∣2
]

=
σ2

3

[
1 + 2

(
1

4

)J]
. (22)

Proof : Because the noise in a given subband is uncorrelated
from that in the other subbands, the output of the synthesis
operation (11) for that subband will be uncorrelated from
the synthesis outputs for the other subbands. Thus, the total
variance of the output is the sum of the output variances due to
each individual subband as given by Theorem 2. Consequently,
we have

E
[∣∣x[k]

∣∣2
]

= σ2

(
1

4

)J
+ σ2

J∑

j=1

(
1

4

)j
. (23)

Using the fact that
∑∞
n=m r

n = rm

1−r , for |r| < 1, we have

E
[∣∣x[k]

∣∣2
]

= σ2

(
1

4

)J
+
σ2

3

[
1−

(
1

4

)J]

=
σ2

3

[
1 + 2

(
1

4

)J]
. (24)

V. CONCLUSIONS

Strictly speaking, the result of (2) applies only to finite-
dimensional spaces CN , whereas the frame bounds in Sec. III
were derived assuming `2(Z), and the noise analysis of Sec. IV
concerned white-noise signals in C∞. If we ignore for the
moment these space differences, (2) would suggest that the
noise variance (expected energy per signal sample) in the
original signal domain for white-noise X (J) with variance σ2

is bounded as

Mσ2

B2N
≤ 1

N
E
[∥∥x

∥∥2
]
≤ Mσ2

A2N
, (25)

assuming x ∈ CN , X(J) ∈ CM , E
[∥∥X

∥∥2
]

= Mσ2, and x is
reconstructed from X(J) with the à trous synthesis procedure
of (11). For a J-scale RDWT, M = (J+1)N , and Theorem 1
indicates A = 2 and B = 2J . Thus, we have

(J + 1)σ2

4J
≤ 1

N
E
[∥∥x

∥∥2
]
≤ (J + 1)σ2

4
. (26)

We note that (26) suggests a limited ability to predict the effect
in the original signal domain of noise added in the RDWT
domain, particularly as J becomes large. This observation
conforms to our intuition concerning frames—since the frame
bounds given by Theorem 1 widen as J increases, we expect
to be able to predict energy from one domain to the other with
decreasing precision.

However, Theorem 3 tells us that we can make a much
stronger characterization of the noise variance in the original
signal domain than we are led to believe from (26). Theorem 3
indicates that, rather than being bounded by ever widening
bounds, the noise variance actually is given by (22), approach-
ing σ2/3 as J becomes large.

We note that, although the preceding development focused
on 1D signals, it is straightforward to generalize the deriva-
tions to the case of 2D image signals that are decomposed
using a separable 2D RDWT. In this case, Theorem 3 gener-
alizes to

E
[∣∣x[k]

∣∣2
]

=
σ2

5

[
1 + 4

(
1

16

)J]
. (27)

In such image-processing applications, the RDWT is usually
implemented with biorthogonal filters rather than orthonormal
filters as assumed here. If the biorthogonal system is “near-
orthonormal” as is often the case in practice (e.g., the ubiqui-
tous 9-7 biorthogonal basis), then we will approximately have
equality in (9) and (10), and consequently in (27).

Finally, in terms of application of the results presented here,
we note that we have exploited (27) directly in an analysis
concerning motion compensation in the RDWT domain for
the RDWT-based coding of video in [14]. There, (27) is
the keystone of a derivation that shows that multiple-phase
motion compensation in the RDWT domain substantially
outperforms an equivalent single-phase process, the inverse
RDWT providing substantial reduction of the variance of the
motion-compensation prediction residual as indicated by (27).
Additionally, we suspect that the results here have analytical
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ramifications for RDWT-domain watermarking such as we pre-
viously considered in [15, 16]; we are currently investigating
this issue.

APPENDIX I
PROOF OF LEMMA 2

Consider the sum
∥∥cJ
∥∥2

+
∥∥dJ

∥∥2 −
∥∥cJ−1

∥∥2. In the fre-
quency domain, we have from (7) and (8),
∥∥ĉJ
∥∥2

+
∥∥d̂J

∥∥2 −
∥∥ĉJ−1

∥∥2
=

1

2π

∫ π

−π

[
J−1∏

λ=0

∣∣∣ĥ0

(
2λω

)∣∣∣
2

+
∣∣ĝ0

(
2J−1ω

)∣∣2
J−2∏

λ=0

∣∣∣ĥ0

(
2λω

)∣∣∣
2

−

J−2∏

λ=0

∣∣∣ĥ0

(
2λω

)∣∣∣
2
]
∣∣x̂(ω)

∣∣2 dω =

1

2π

∫ π

−π

[
J−2∏

λ=0

∣∣∣ĥ0

(
2λω

)∣∣∣
2
]
∣∣x̂(ω)

∣∣2 dω, (28)

where we use the fact that the filters are power comple-
mentary; i.e,

∣∣ĝ0

(
2J−1ω

)∣∣2 +
∣∣ĥ0

(
2J−1ω

)∣∣2 = 2. Conse-
quently,

∥∥ĉJ
∥∥2

+
∥∥d̂J

∥∥2−
∥∥ĉJ−1

∥∥2
= 1

2π

∫ π
−π
∣∣ĉJ−1(ω)

∣∣2 dω =∥∥ĉJ−1

∥∥2
=
∥∥cJ−1

∥∥2, where we again employ (7). Thus, we
have ∥∥cJ

∥∥2
+
∥∥dJ

∥∥2 −
∥∥cJ−1

∥∥2
=
∥∥cJ−1

∥∥2
. (29)

We then rearrange the sum in (6) as
∥∥X(J)

∥∥2
=
∥∥cJ
∥∥2

+∑J
j=1

∥∥dj
∥∥2

=
∥∥cJ
∥∥2

+
∥∥dJ

∥∥2−
∥∥cJ−1

∥∥2
+
∥∥X(J−1)

∥∥2, and
we arrive at (12) by substituting (29) in for the first three
terms.

APPENDIX II
SIGNALS SATISFYING RDWT FRAME BOUNDS

We now show that the bounds of A = 2 and B = 2J are
the tightest possible frame bounds since we can find sequences
x ∈ `2(Z) that asymptotically meet these bounds. Specifically,
consider a constant sequence x[k] = 1. Technically, this
x is not in `2(Z); however, we define xN ∈ `2(Z) as
xN [k] = 1√

2N+1
, for −N ≤ k ≤ N , and 0 otherwise.

Clearly,
∥∥xN

∥∥2
= 1, ∀N . Since h and g are orthonormal

filters, h[−k] ∗ x[k] =
∑
n h[n] =

√
2, and g[−k] ∗ x[k] =∑

n g[n] = 0. Thus, we have in the limit,

lim
N→∞

√
2N + 1

(
h[−k] ∗ xN [k]

)
= h[−k] ∗ x[k] =

√
2 (30)

lim
N→∞

√
2N + 1

(
g[−k] ∗ xN [k]

)
= g[−k] ∗ x[k] = 0. (31)

Let cj [k] and dj [k] be the coefficient sequences produced by
(4) and (5) with c0[k] = xN [k]. Then, from (30),

lim
N→∞

cj [k]
√

2N + 1 = 2j/2 = 2j/2 lim
N→∞

xN [k]
√

2N + 1,

(32)
and so

lim
N→∞

∥∥cj
∥∥2

= 2j lim
N→∞

∥∥xN
∥∥2

= 2j , (33)

since ‖xn‖2 = 1, ∀N . Similarly, from (31), we have
limN→∞

∥∥dj
∥∥2

= 0.

Now, consider the quantity βN =
∥∥X(J)

N

∥∥2
/
∥∥xN

∥∥2, where
X

(J)
N = RDWTJ [xN ]. From (1), βN ≤ B, ∀N . From (6)

and (33), we have

lim
N→∞

βN = lim
N→∞

∥∥X(J)
N

∥∥2

∥∥xN
∥∥2 = lim

N→∞

∥∥X(J)
N

∥∥2

= lim
N→∞

[∥∥cJ
∥∥2

+
J∑

j=1

∥∥dj
∥∥2
]

= 2J . (34)

Consequently, we have 2J ≤ B and, from (14), B ≤ 2J . Thus,
B = 2J .

A similar derivation using x[k] = (−1)k and xN [k] =
(−1)k√
2N+1

for −N ≤ k ≤ N establishes that A = 2.
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