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DOA Estimation via a Network of Dumb Sensors
Under the SENMA Paradigm
Stefano Marano, Vincenzo Matta, Peter Willett, and Lang Tong

Abstract—Following the SENMA concept, we consider a wire-
less network of very dumb and cheap sensors, polled by a travelling
“rover.” Sensors are randomly placed and isotropic: Individually,
they have no ability to resolve the direction of arrival (DOA) of
an acoustic wave. However, they do observe the wavefront at dif-
ferent times. We assume that the communication load must be as
limited as possible, so that these times cannot be communicated to
the rover. Notwithstanding the lack of transmission of arrival times
and the lack of DOA resolution ability of the individual sensors,
DOA estimation is possible and simple, and asymptotic efficiency
becomes closely approximated after a reasonable number of rover
snapshots. Key features are the directionality of the rover antenna,
the area it surveys, and the average number of sensors inside that
area, as accorded a Poisson distribution.

Index Terms—Data fusion, direction of arrival (DOA), sensor
network.

I. INTRODUCTION

ALARGE network of extremely low-complexity (a.k.a.,
“dumb”) sensors is employed to estimate the direction of

arrival (DOA) of a plane-wave (far-field, and for concreteness,
let us assume acoustic) event. The system is designed to detect
the wavefront passage regardless of the signal waveform fea-
tures. The sensors are isotropic: None of them has any ability at
all to resolve the DOA on its own; however, each can memorize
the time instant of the acoustic wavefront passage. The sensors
are randomly displaced over a certain surveyed area according
to a Poisson field model, as might occur were the sensors
dropped by an aircraft in an unstructured way.

According to the SENMA model, a travelling rover receives
(electromagnetic) signals from the sensors that lie in its field of
view. As is well known, a distinct feature of sensor networks is
the tradeoff between the communication load, the requirement
to fuse the data, and the accuracy of the network inference goal
(e.g., detection of events, parameter estimation, etc.) (e.g. see
[3]). We avoid any concern about the communication burden:
All of the sensors transmit to the rover using one and the same
channel. The key point is that they do not transmit bits of data but
simply emit an analog periodic signal made of short pulses. In
aggregate, they form a train of delta-like pulses, and this is what
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Fig. 1. Addressed scenario. A travelling rover polls the remote sensors inside
its field of view. The DOA estimation procedure is based on the number of
sensors that lie inside the strip of width �. The separate box introduces some
notations: � is the sought DOA, and � is the rover orientation, whose field of
view is an ellipse with axes r and h.

the rover observes. The directionality of the rover antenna is key,
and in fact, the more asymmetric is the antenna lobe, the more
effective the estimation procedure becomes;1 however, there are
limits, as discussed in the following.

We find it convenient to work with a reasonable, simple
mathematical model: the rover’s antenna pattern—probably
in practice some sort of truncated cone—is modeled as an
ellipse. There is no requirement for an elliptical field of view,
only that the field of view is known; the ellipse makes analysis
convenient and explicit.

II. MODEL

The notional scenario is depicted in Fig. 1. We consider a large
network of wireless sensors, say, , , covering a cer-
tain two-dimensional region. The sensors are randomly located
according to a Poisson field probability model, with being the
sensor density per unit of area: The average number of sensors,
inside an arbitrarily shaped region of area , is .

We assume that each is an acoustic antenna, with no direc-
tionality capabilities: Its antenna pattern is isotropic. If hit by a
short-duration acoustic wavefront, coming from an arbitrary di-
rection, sensor starts to transmit an electromagnetic periodic
signal , where is a short pulse of
arbitrary shape, is the time at which the acoustic wavefront

1The sensors are dumb and isotropic; the rover is not.
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Fig. 2. Signal collected by the rover is schematically depicted in the top plot.
With an appropriate observation interval (larger than twice the pulse period T ),
it is possible to order the pulses: They are arranged in the same order in which
the sensors have emitted them (i.e., have been hit by the acoustic wavefront);
see bottom plot. Here, t is the middle point between � and � , and the
�=v-interval centered on t includes the two pulses at � and � . These are
emitted by the two sensors inside the �-strip of Fig. 1.

impinges on the device, is an a priori chosen time interval,
common to all sensors, and is an integer.

According to the SENMA paradigm [4], a roving base station
(rover in Fig. 1) travels the area. For some fixed position, the rover
takes a dwell: It collects, for a certain time interval,2 the signal

. Such a received signal is made of the super-
position of the signals emitted by the ensemble of sensors
lying in its field of view. It is worth emphasizing that for reasons
of analysis, one might assume that the sensors emit their pulse
trains continually; but for reasons of battery life, the emissions
would remain virtual until a rover requests them via a poll.

We assume that the antenna pattern is an ellipse with the main
axis of length aligned to the rover and the secondary one of
length . It is also assumed that all signals coming from sensors
inside the ellipse are visible, while conversely, none from out-
side can be received; this defines the rover’s field of view.3

A typical waveform received by the rover is schemati-
cally illustrated in Fig. 2. Note that we set (larger
works as well), where is the speed of the acoustic wave in the
medium: is the time needed for the acoustic wave to cover
the main axis of the lobe. Such a choice enables the rover to
order the observed pulses so that , since sensors in-
side the field of view all have a maximum time interval of
and since the pulse period is twice that. This is illustrated in
Fig. 2, where the zoomed time axis (bottom) gives the correct
pulse ordering.4 Clearly, the sensor positions are unknown, and
the pulses are unlabeled: The rover is neither able to recover the

2A minimum interval of 2T can be shown to be sufficient.
3Thus, again with reference to Fig. 1, the elliptical field of view is actually the

combination of the antenna pattern and of the maximum transmitting distance
of the signal emitted by the sensors.

4Actually, the depicted times should be � + kT for some k; we write � for
simplicity; we are interested only with time differences. Note also that consid-
ering acoustic DOAs avoids possible concerns about synchronization between
sensors and rover.

absolute times, nor it is capable of associating any pulse with its
corresponding sensor position inside its field of view.

In this letter, we propose the following suboptimal approach,
which is simple to understand and easy to implement. Again with
reference to Fig. 2, consider the first and the last received echoes
and compute . Then, count how many pulses
lie in the interval , , with
being the time for covering an acoustic distance . Let be this
number, where is the snapshot index; our estimation procedure
is based on the observables . We understand that more sophis-
ticated strategies are possible: One might exploit more complete
information (as compared to just ) contained in the received

. Examples will be offered in [2], and we note that one such
example exploits the DOA information embedded in .

The receiving antenna of the rover can be arbitrarily oriented,
or alternatively, the rover rotates. In both cases, it may explore
the whole arc, for any given position. A key assumption made
here is that successive snapshots taken by the rover always in-
volve sensors never encountered before (i.e., snapshot indepen-
dence). For analysis, it is sufficient to take each sensor as having
a periodic emission; for practical battery life, they would be
silent unless provoked by a rover poll.

III. DOA ESTIMATION AND PERFORMANCES

Let be the unknown DOA and be the
rover’s (ellipse’s) orientation at snapshot . Assume that ,

, are independent of each other, and note that this
number can be approximately taken as the number of sensors
that lie in the strip of width within the ellipse5 (see Fig. 1).
For the sake of simplicity, such a region is taken as rectangular:
One side is given by the ellipse’s diameter (corresponding to
DOA and rover angle ), and the other side is . The area is
accordingly computed as

(1)

The basic idea behind the proposed DOA estimation procedure
is that if is close to , then is small and is small
as well; conversely, when is orthogonal to , there is a larger
area and, consequently, a larger . That is, contains infor-
mation about . More precisely, is a Poisson random vari-
able whose average value is approximately . Accord-
ingly, the distribution of the aggregate of observables
collected in independent snapshots is known, and from that,
the -ML (maximum likelihood) estimation can be numerically
computed6

5Should � and � be generated by sensors located on opposite boundaries
of the rover’s field of view, this would be true. Accordingly, the greater the
sensor field density �, the better the approximation works.

6We would like to stress that different antenna patterns would simply lead to
different formulas for A(� ; �). Clearly, the proposed method is applicable to
different patterns, with only some (presumably minor) numerical difference in
the correspondent performances: The key is not the exact shape of the pattern
but rather its eccentricity.
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As grows, the well-known asymptotic properties of ML
estimation [5] become met. In particular, , and
VAR , where is the -snapshot Fisher
information with respect to . As we shortly show, numerical
investigations confirm that such performances are, in practice,
attained for moderately large values of (see below). Thus,
computation of is relevant and is now in order.

First, note that is additive for independent observa-
tions—i.e., , where is the Fisher
information from snapshot . Thus, defining ,
and using as a shortcut for the Poisson distribution
with argument and mean , one gets

The following approximation is justified by a standard Monte
Carlo integration approach, amounting to replacing the arith-
metic mean by the statistical expectation with respect to , this
latter assumed uniformly distributed in (0, ):

large

(2)

In the last equality, we have defined , and the el-
lipse’s aspect ratio has been denoted as . The function

is expressible in terms of complete elliptic integrals of the
first and second kind, and , respectively (see [1, form.
17.3.1, 17.3.3] for the definitions). In fact

From (2), we see that is constant with , grows linearly
with and with , and further depends upon .

Some comments follow.

• Asymptotically, all the values can be estimated with the
same accuracy.

• represents the effective area of the visible region; that
is to say, it is the larger area available for the clustered
sensors’ counting process. Accordingly, is the av-
erage number of sensors inside such region (the effective
number ).

• decreases in , implying that the more eccentric the
rover’s field of view (ellipse), the more effective the esti-
mation of the DOA.

• Ideally, for a prescribed , one would have ,
with the product held fixed. However, cannot increase
without bound for obvious reasons ( is proportional to
the maximum transmitting distance of sensors), nor can
we have ; that is, and cannot be assigned
independent of each other.

Fig. 3. Variance of � compared to the inverse of Fisher information
versus the total number of snapshots taken M . Four combinations of
the relevant parameters are addressed. The arrows on the horizontal axis
denote the points after which bias in the estimate becomes negligible, i.e.,
E[� ] � �.

• In the limit as

and the opposite extreme of

The Fisher proxy is reasonable, provided that attains
its large-sample optimality: and VAR

. Also, recall that there are approximations in the pro-
posed model: One is the way we computed the area in (1).

We have simulated, with the double aim of checking the
approximations and of investigating at what values of the
asymptotic performances seem to be attained. In the simula-
tions, an ellipsoidal field of view is used, for simplicity and
to correspond to the explicit bounds. In Fig. 3, the variance
of the estimator is compared to the inverse of Fisher
information, as given in (2). We see that within a reasonable
number of snapshots, the asymptotic performances are met.7

The down-arrows on the horizontal axis denote the point after
which the absolute value of the estimator bias stays below .
To check the approximations, for given and , we have
run simulations using different combinations of the relevant
parameters , , , and . Qualitatively, the results are close to
those given in Fig. 3. For instance, in this way, we have verified
that the speed of convergence of the variance to its asymptote
is essentially insensitive to the ratio : In Fig. 3, we have
chosen , but doubling this value basically yields
the same results.8 In summary, the simulations corroborate the
analysis and validate the analytical relationships.

7In judging the practical impact ofM , recall that the number of different rover
locations is justM divided by the number of snapshots taken in a fixed position.

8Clearly, for � � h, the analytical approximation behind (1) fails.
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IV. SUMMARY

We have investigated the DOA estimation by a network of
isotropic sensors polled by a travelling “rover,” with the system
design based upon the SENMA paradigm. The novelty is that
the sensors are unusually “dumb” in that they have individually
no DOA capability; indeed, they have no capabilities at all ex-
cept that of emitting a periodic signal following their encounter
with the wavefront whose DOA is sought. The sensors are in-
expensive and randomly located, they do not communicate with
each other, and their positions are unknown both to them and to
the rover.

The idea is that they send a periodic train of short pulses that
starts at the time instant that the sensor is hit by an acoustic
wave of short duration. (Actually, the physical transmission to
the rover is virtual until the rover polls the sensor.) The key point
is that the rover’s field of view is eccentric (taken here as ellip-
tical, but that is only for ease of analysis). The DOA information

is contained in the number of sensors within a “stripe” in the
rover’s field of view and oriented orthogonal to the DOA. This
number is taken as Poisson distributed. The results are remark-
ably good, and asymptotically efficient performance is obtained
with a reasonable number of snapshots taken by the rover.
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