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From finite-system entropy to entropy rate for a
Hidden Markov Process

Or Zuk, Eytan Domany, Ido Kanter and Michael Aizenman

Abstract— A recent result presented the expansion for the be understood a$(X = z). For a stationary process the

entropy rate of a Hidden Markov Process (HMP) as a power |imit in () exists andH can also be computed via the con-

series in the noise variablee. The coefficients of the expansion ditional entropy ([4]) asﬁ(Y) = limy H(YNHY]NA)
- —00 1 .

around the noiseless { = 0) limit were calculated up to 11th H UV ts th diti | ent hich f
order, using a conjecture that relates the entropy rate of a HIP ere H(U|V) represents the conditional entropy, which for

to the entropy of a process of finite length (which is calculard random variablesU and V' is the average uncertainty of

analytically). In this communication we generalize and pree the conditional distribution of/ conditioned onV, that is

the validity of the conjecture, and discuss the theoreticaland HU|V) =%, P(U = w)H(U|V = v). By the chain rule
v

practical consequences of our new theorem. for entropy, it can also be viewed as a difference of entpie

Index Terms— Hidden Markov Processes, Entropy rate H(U|V) = H(U,V)—H(V). This relation will be used below.
There is at present no explicit expression for the entropgy ra
I. INTRODUCTION of aHMP ([1], [5]). Few recent works ([5], [6], [7]) have dealt

ET {Xy} be a finite state stationary Markov procesg/ith finding the asymptotic behavior df in several regimes,
L over the alphabeE = {1,..,s}, and let{Yy} be its albeit giving rigorously only bounds or at most second ([7])
noisy observation (on the same alphabet). The pair can @ygler behavior. Here we generalize and prove a relatiopship
described by the Markov transition matri = M,y = that was posed in [7] as a conjecture, thereby turning the
{my;} and the emission matri® = R.,., which yield the computation presented there, Bfas a series expansion up to
probabilities P(Xy41 = j|Xy = i) = m;; and P(Yy = 11th order ine, into a rigorous statement.
jI X~ = 1) =r;;. We consider here the case where the signal
to noise ratio (SNR) is small ant¥/ is strictly positive (n;; > Il. THEOREM STATEMENT AND PROOF
0) and thus has a unique stationary distribution. For thelthig Our main result is the following:
- SNR’ regime one may writdR = I + €I', wheree > 0 is Theorem 1: Let Hy = Hy(M,T,¢) = H([Y]Y) be the
some small number] is the identity matrix, and the matrix entropy of a system of lengthV, and letCy = Hy — Hy_1.
T = {t;;} satisfiest;; < 0,t;; > 0,Vi# jand};_ t;; =0. Assumé there is some (complex) neighborho@)(0) c C
The process” can be viewed as an observationXfthrough of zero, in which the (one-variable) functiod€'x} and A
a noisy channel. It is an example oHidden Markov Process  are analytic ine, with a Taylor expansion given by:
(HMP), and is determined by the parametér§ T and e.
More generallyHMPs have a rich and developed theory, and Cn (M, T’ €) ZC](\I; e, H(M,T,e) ZC Fek (2)
enormous applications in various fields (see [1], [2]).
An important property of” is its entropy rate. The Shannon(The coeﬁicientﬁj(\f) are functions of the parametek¢ and
entropy rate of a stochastic process ([3]) measures the @madlli. From now on we omit this dependence). Then:

of 'uncertainty per-symbol’. More formally, for < j let [X]{
e : NP3 L oW ot 3)
denote the vectofX;,, .., X;). The entropy rate is defined as: 2 N
) = i H([Y]Y) 1) Cy is an upperbound ([4]) fofl. The behavior stated in Thm.
T NS% N @ was discovered using symbolic computations, but proven

Where H(X) = — > P(X)log P(X); We will sometimes only for £ < 2, in the binary symmetric case ([7]). Although
omit the realizationz of the variable X, so P(X) should technically involved , our proof is based on two simple ideas

E.D. and O.Z. are in the Department of Physics of Complex eByst 1it is easy to show that the functiorSy are differentiable to all orders in
Weizmann Inst. of Science. €, ate = 0. The assumption which is not proven here is that they aredn fa
I.LK. is in the Department of Physics, Bar-llan Univ. analytic with a radius of analyticity which is uniform iN, and are uniformly
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First, we distinguish between the noise parameters atrdiiffe The casek; = 1 is reduced back to the case = 0 by
sites. We consider a more general procdssy}, where taking the derivative. We deno(@]{V(j_W) the vector which
Z;'s emission matrix isR; = I + ¢;T. The proces§Zy} is equal to[Z]Y in all coordinates except on coordinate
is determined byM,T and [¢]Y. We define the following whereZ; = r. Using eq[D, we get:

functions: P (e ]N+1) (k)1 OF N1 B
_ N+1 -
Fn(M,T,[e]) = H([Z]Y) - H([Z]?'™) (4) " Oes? ... 9ty | Oe2 o]y
Setting all thee;’s equal reduces us back to tlieprocess, so -1 Zs:t Z
in particular Fiy (M, T, (e, ..,€)) = Cn(e). Oei> ..ok | = i s
Second, we observe that if a particularis set to zero, the !
2—r
observationZ; equals the staté(;. Thus, conditioning back P([Z]{V“( - ))log P(Zy1|[Z2)))-
to the past is 'blocked’. This can be used to prove:
Lemma 1. Assumee; = 0 for somel < j < N. Then: P(ZN+1|[Z]{V)P([Z]{V(HT))} } =
62—0
(41 +1=0
Fn([eY) = Fn—ja([el}0)
9 k)—1
Proof: F' can be written as the sum: ﬁ{ th r Z
Z Oey? ... O€y —y v
P(] ZN|1Z)7 1) log P(ZN11Z]7 )
1—7) _
(2% P(ZY" ) 10g P(Zx 121 1) -
®)
Here the dependence da])¥ and M, T is hidden in the
iliti i _ _ 7. _ (1-7) z
probab|I|t|e§P(..)._Slncee] 0, we. must ha_v_eXJ. Z;, and PzZy|[Z)N YHP(z) N )} _ FE (D)
therefore (sinceX is a Markov chain), conditioning further to a=0 [ =0
the past is 'blocked’, that is: (10)
[ |
_ N—1y _ N—1 . N
¢j =0= PZn[[Z]7 ) = P(Zn[[2]5 ) 6) C](\’f) is obtained by summing% on all k's with weight k:
Substituting i 5 gi : k
ubstituting in ecﬂ gives C](vk) _ Z FE (11)
Z P([ Zy|[2)] ) 1og P(Zx|12]] ) = Fe(k)=k

The next lemma shows that one does not need to sum on all
suchk’s, as many of them give zero contribution:
- ZP g PZNIIZ]™) = Fn-jin (D Lguma 3 Leth= Y. If 3i < j < N, with s > 1, k; <
a7 1, thenFk =0,

. _ o . Proof: Assume firstk; = 0. Using lemmdIL we get
Letk = [k]Y be a vector withk; € {NUO}. Define its 'weight’

asw(k) = 3.~ k;. Define also:

“ F = «®) Fy (8) _ ") Fy_ i1 ([d5) _
> w - k k k k
FJ]\QI = 2 FNk (8) 6611,..,8€NN =0 6611,..,66NN =0
Oei, .., 0y o
. - w (k) — . N
As we now show, adding zeros toleavesF¥ unchanged : o OFN —j1([d; )] -0 (12)
Lemma 2: Let k = [k]¥ with k; < 1. Denotek(™ the ey, 0!, ., Dely Dei =0
concatenationk(") = (0, ..,0, k1, .., k). Then: Assume nowk; = 1. Write the probability ofZ:
~——
T P(21Y) = 3 PUXINPUZIY X)) =
Ff=FFy ,vreN [y
Proof: Assume firstk; = 0. Using lemmdIL, we get: l
' . 9 N J Z P(X]Y) H((Sxizi +€itx, z,) (13)
FEO gy = 28 Fn (i) By =1
' RPN ,36T+N 0 whereé is Kronecker’s delta. Differentiate with respectdp
ow k)F N+r . N
EAUD N _pgy @ oR(zL))
a€r+27 . ’aer-ﬁ-N =0 an e;i=0
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S P(XIVtx, 2, [[Ox.z, + €itx.z,) -

(X]y i 0
{itxirpqzﬁv ‘ﬁ’%} (14)
r=1 €;=0
Using Bayes’ ruleP(Zy|[Z]Y 1) = %, we get:
OP(Zn[Z)Y )
an -
€;=0
1 - NG—=r)
P27 ;txir {P([Z]l )—
PZNIZE PN as)
This gives:
OIP(Z¥)log P(ZxIZIN 1| _
an ;=0
>t {PUZINY ) log P(ZuI1Z1Y )+
r=1
PAZYY") = Py |2 P2y T
" (16)
And therefore:
OFn|
aej €;=0
—ZW{Z (P27 ) log P2 112N ) -
=t gy
P(ZN|[Z1¥-1>P<[ZJ¥-““”>}} -
€;=0
{— >txe > [PUZIY ) 10g P(Z01Z)) ) -
r=l [z]¥
PENIZIY P2 ) } (17)
e1=0

The latter equality comes from using &§). 6, which 'blocke th[z]
dependence backwards. EQl 17 shows¢hdbes not appear in

OFN
Oe;

. . ki+1
fori < j, thereforeZ_fx
0 Oe; "0

€= € ¢

= 0andFk = 0.
EjZO

We are now ready to prove our main theorem:
Proof:

Let & = [k]V with w(k) = k. Define its length’ asl(k) =
N + 1 — ming,~1{i}. It easily follows from lemmdl3 that
Fk #0=1(k) < [E£2] — 1. Thus, according to lemnid 2:

(k k)

Fi=rF (18)
=1

for all s in the sum. Summing on aIFJ’\g, with the same

'weight' gives C( = C’F&], VYN > [E£3]. But from

the analyticity of Cy and H neare = 0 it follows that

My oo C](Vk) =", thereforecj(\f) =CW, VN > [E3],
]

IIl. CONCLUSION

Our main theorem sheds light on the connection between
finite and infinite chains, and gives a practical and stréight
ward way to compute the entropy rate as a series expansion
in € up to an arbitrary power. The surprising 'settling’ of the
expansion coefficiente’) = C*) for N > [££3], hold
for the entropy. For other functions involving only condital
probabilities (e.g. relative entropy between titMPs) a
weaker result holds: the coefficients 'settle’ fdF > k. One
can expand the entropy rate in several parameter regimes. As
it turns out, exactly the same ’settling’ as was proven in Thm
@ happens in the 'almost memoryless’ regime, whafeis
close to a matrix which makes th¥;’s i.i.d. This and other
regimes, as well as the analytic behavior of thIP ([8]),
will be discussed elsewhere.
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