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From finite-system entropy to entropy rate for a

Hidden Markov Process
Or Zuk, Eytan Domany, Ido Kanter and Michael Aizenman

Abstract— A recent result presented the expansion for the
entropy rate of a Hidden Markov Process (HMP) as a power
series in the noise variableǫ. The coefficients of the expansion
around the noiseless (ǫ = 0) limit were calculated up to 11th
order, using a conjecture that relates the entropy rate of a HMP
to the entropy of a process of finite length (which is calculated
analytically). In this communication we generalize and prove
the validity of the conjecture, and discuss the theoreticaland
practical consequences of our new theorem.

Index Terms— Hidden Markov Processes, Entropy rate

I. I NTRODUCTION

L ET {XN} be a finite state stationary Markov process

over the alphabetΣ = {1, .., s}, and let{YN} be its

noisy observation (on the same alphabet). The pair can be

described by the Markov transition matrixM = Ms×s =

{mij} and the emission matrixR = Rs×s, which yield the

probabilitiesP (XN+1 = j|XN = i) = mij and P (YN =

j|XN = i) = rij . We consider here the case where the signal

to noise ratio (SNR) is small andM is strictly positive (mij >

0) and thus has a unique stationary distribution. For the ‘high

- SNR’ regime one may writeR = I + ǫT , whereǫ > 0 is

some small number,I is the identity matrix, and the matrix

T = {tij} satisfiestii < 0, tij ≥ 0, ∀i 6= j and
∑s

j=1 tij = 0.

The processY can be viewed as an observation ofX through

a noisy channel. It is an example of aHidden Markov Process

(HMP), and is determined by the parametersM , T and ǫ.

More generally,HMPs have a rich and developed theory, and

enormous applications in various fields (see [1], [2]).

An important property ofY is its entropy rate. The Shannon

entropy rate of a stochastic process ([3]) measures the amount

of ’uncertainty per-symbol’. More formally, fori ≤ j let [X ]ji
denote the vector(Xi, .., Xj). The entropy rate is defined as:

H̄(Y ) = lim
N→∞

H([Y ]N1 )

N
(1)

WhereH(X) = −
∑

X P (X) logP (X); We will sometimes

omit the realizationx of the variableX , so P (X) should
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be understood asP (X = x). For a stationary process the

limit in (1) exists andH̄ can also be computed via the con-

ditional entropy ([4]) as:H̄(Y ) = limN→∞ H(YN |[Y ]N−1
1 ).

Here H(U |V ) represents the conditional entropy, which for

random variablesU and V is the average uncertainty of

the conditional distribution ofU conditioned onV , that is

H(U |V ) =
∑

v P (U = u)H(U |V = v). By the chain rule

for entropy, it can also be viewed as a difference of entropies,

H(U |V ) = H(U, V )−H(V ). This relation will be used below.

There is at present no explicit expression for the entropy rate

of a HMP ([1], [5]). Few recent works ([5], [6], [7]) have dealt

with finding the asymptotic behavior of̄H in several regimes,

albeit giving rigorously only bounds or at most second ([7])

order behavior. Here we generalize and prove a relationship,

that was posed in [7] as a conjecture, thereby turning the

computation presented there, ofH̄ as a series expansion up to

11th order inǫ, into a rigorous statement.

II. T HEOREM STATEMENT AND PROOF

Our main result is the following:

Theorem 1: Let HN ≡ HN (M,T, ǫ) = H([Y ]N1 ) be the

entropy of a system of lengthN , and letCN = HN −HN−1.

Assume1 there is some (complex) neighborhoodBρ(0) ⊂ C

of zero, in which the (one-variable) functions{CN} and H̄

are analytic inǫ, with a Taylor expansion given by:

CN (M,T, ǫ) =
∞∑

k=0

C
(k)
N ǫk, H̄(M,T, ǫ) =

∞∑

k=0

C(k)ǫk (2)

(The coefficientsC(k)
N are functions of the parametersM and

T . From now on we omit this dependence). Then:

N ≥ ⌈
k + 3

2
⌉ ⇒ C

(k)
N = C(k) (3)

CN is an upperbound ([4]) for̄H . The behavior stated in Thm.

1 was discovered using symbolic computations, but proven

only for k ≤ 2 , in the binary symmetric case ([7]). Although

technically involved , our proof is based on two simple ideas.

1It is easy to show that the functionsCN are differentiable to all orders in
ǫ, at ǫ = 0. The assumption which is not proven here is that they are in fact
analytic with a radius of analyticity which is uniform inN , and are uniformly
bounded within some common neighborhood ofǫ = 0

http://arxiv.org/abs/cs/0510016v1
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First, we distinguish between the noise parameters at different

sites. We consider a more general process{ZN}, where

Zi’s emission matrix isRi = I + ǫiT . The process{ZN}

is determined byM ,T and [ǫ]N1 . We define the following

functions:

FN (M,T, [ǫ]N1 ) = H([Z]N1 )−H([Z]N−1
1 ) (4)

Setting all theǫi’s equal reduces us back to theY process, so

in particularFN (M,T, (ǫ, .., ǫ)) = CN (ǫ).

Second, we observe that if a particularǫi is set to zero, the

observationZi equals the stateXi. Thus, conditioning back

to the past is ’blocked’. This can be used to prove:

Lemma 1: Assumeǫj = 0 for some1 < j < N . Then:

FN ([ǫ]N1 ) = FN−j+1([ǫ]
N
j+1)

Proof: F can be written as the sum:

FN = −
∑

[Z]N1

P ([Z]N−1
1 )P (ZN |[Z]N−1

1 ) logP (ZN |[Z]N−1
1 )

(5)

Here the dependence on[ǫ]N1 and M,T is hidden in the

probabilitiesP (..). Sinceǫj = 0, we must haveXj = Zj , and

therefore (sinceX is a Markov chain), conditioning further to

the past is ’blocked’, that is:

ǫj = 0 ⇒ P (ZN |[Z]N−1
1 ) = P (ZN |[Z]N−1

j ) (6)

Substituting in eq. 5 gives:

FN = −
∑

[Z]N1

P ([Z]N−1
1 )P (ZN |[Z]N−1

j ) logP (ZN |[Z]N−1
j ) =

−
∑

[Z]N
j

P ([Z]Nj ) logP (ZN |[Z]N−1
j ) = FN−j+1 (7)

Let~k = [k]N1 be a vector withki ∈ {N∪0}. Define its ’weight’

asω(~k) =
∑N

i=1 ki. Define also:

F
~k
N ≡

∂ω(~k)FN

∂ǫk1
1 , .., ∂ǫkN

N

∣
∣
∣
∣
∣
~ǫ=0

(8)

As we now show, adding zeros to~k leavesF~k
N unchanged :

Lemma 2: Let ~k = [k]N1 with k1 ≤ 1. Denote~k(r) the

concatenation:~k(r) = (0, .., 0
︸ ︷︷ ︸

r

, k1, .., kN ). Then:

F
~k
N = F

~k(r)

r+N , ∀r ∈ N

Proof: Assume firstk1 = 0. Using lemma 1, we get:

F
~k(r)

N+r([ǫ]
N+r
1 ) =

∂ω(~k(r))Fr+N ([ǫ]N+r
1 )

∂ǫk2
r+2, .., ∂ǫ

kN

r+N

∣
∣
∣
∣
∣
~ǫ=0

=

∂ω(~k)FN ([ǫ]N+r
r+1 )

∂ǫk2
r+2, .., ∂ǫ

kN

r+N

∣
∣
∣
∣
∣
~ǫ=0

= F
~k
N ([ǫ]r+N

r+1 ) (9)

The casek1 = 1 is reduced back to the casek1 = 0 by

taking the derivative. We denote[Z]N1
(j→r)

the vector which

is equal to[Z]N1 in all coordinates except on coordinatej,

whereZj = r. Using eq. 9, we get:

F
~k(1)

N+1([ǫ]
N+1
1 ) =

∂ω(~k)−1

∂ǫk2
3 . . . ∂ǫkN

N+1

[

∂FN+1

∂ǫ2

∣
∣
∣
∣
ǫ2=0

]∣
∣
∣
∣
∣
~ǫ=0

=

∂ω(~k)−1

∂ǫk2
3 . . . ∂ǫkN

N+1

{

−

s∑

r=1

tXir

∑

[Z]N+1
1

[

P ([Z]N+1
1

(2→r)
) logP (ZN+1|[Z]N1 )−

P (ZN+1|[Z]N1 )P ([Z]N1
(2→r)

)
]∣
∣
∣
ǫ2=0

}∣
∣
∣
∣
∣
[ǫ]N+1

1 =0

=

∂ω(~k)−1

∂ǫk2
2 . . . ∂ǫkN

N

{

−

s∑

r=1

tXir

∑

[Z]N1
[

P ([Z]N1
(1→r)

) logP (ZN |[Z]N−1
1 )−

P (ZN |[Z]N−1
1 )P ([Z]N1

(1→r)
)
]∣
∣
∣
ǫ1=0

}∣
∣
∣
∣
∣
[ǫ]N1 =0

= F
~k
N ([ǫ]N1 )

(10)

C
(k)
N is obtained by summingF~k

N on all ~k’s with weight k:

C
(k)
N =

∑

~k,ω(~k)=k

F
~k
N (11)

The next lemma shows that one does not need to sum on all

such~k’s, as many of them give zero contribution:

Lemma 3: Let ~k = [k]N1 . If ∃i < j < N , with ki ≥ 1, kj ≤

1, thenF~k
N = 0.

Proof: Assume firstkj = 0. Using lemma 1 we get

F
~k
N ≡

∂ω(~k)FN (~ǫ)

∂ǫk1
1 , .., ∂ǫkN

N

∣
∣
∣
∣
∣
~ǫ=0

=
∂ω(~k)FN−j+1([ǫ]

N
j )

∂ǫk1
1 , .., ∂ǫkN

N

∣
∣
∣
∣
∣
~ǫ=0

=

∂ω(~k)−1

∂ǫk1
1 , .., ∂ǫki−1

i , .., ∂ǫkN

N

[

∂FN−j+1([ǫ]
N
j )

∂ǫi

]∣
∣
∣
∣
∣
~ǫ=0

= 0 (12)

Assume nowkj = 1. Write the probability ofZ:

P ([Z]N1 ) =
∑

[X]N1

P ([X ]N1 )P ([Z]N1 |[X ]N1 ) =

∑

[X]N1

P ([X ]N1 )

N∏

i=1

(δXiZi
+ ǫitXiZi

) (13)

whereδ is Kronecker’s delta. Differentiate with respect toǫj :

∂P ([Z]N1 )

∂ǫj

∣
∣
∣
∣
ǫj=0

=
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∑

[X]N1



P ([X ]N1 )tXjZj

∏

i6=j

(δXiZi
+ ǫitXiZi

)





∣
∣
∣
∣
∣
∣
ǫj=0

=

{
s∑

r=1

tXirP ([Z]N1
(j→r)

)

}∣
∣
∣
∣
∣
ǫj=0

(14)

Using Bayes’ ruleP (ZN |[Z]N−1
1 ) =

P ([Z]N1 )

P ([Z]N−1
1 )

, we get:

∂P (ZN |[Z]N−1
1 )

∂ǫj

∣
∣
∣
∣
∣
ǫj=0

=

1

P ([Z]N−1
1 )

s∑

r=1

tXir

[

P ([Z]N1
(j→r)

)−

P (ZN |[Z]N−1
1 )P ([Z]N−1

1

(j→r)
)
]∣
∣
∣
ǫj=0

(15)

This gives:

∂[P ([Z]N1 ) logP (ZN |[Z]N−1
1 )]

∂ǫj

∣
∣
∣
∣
∣
ǫj=0

=

s∑

r=1

tXir

{

P ([Z]N1
(j→r)

) logP (ZN |[Z]N−1
1 )+

P ([Z]N1
(j→r)

)− P (ZN |[Z]N−1
1 )P ([Z]N−1

1

(j→r)
)
}∣
∣
∣
ǫj=0

(16)

And therefore:
∂FN

∂ǫj

∣
∣
∣
∣
ǫj=0

=

−
s∑

r=1

tXir

{
∑

[Z]N1

[

P ([Z]N1
(j→r)

) logP (ZN |[Z]N−1
1 )−

P (ZN |[Z]N−1
1 )P ([Z]N−1

1

(j→r)
)
]
}∣
∣
∣
∣
∣
ǫj=0

=

{

−

s∑

r=1

tXir

∑

[Z]N
j

[

P ([Z]Nj
(1→r)

) logP (ZN |[Z]N−1
j )−

P (ZN |[Z]N−1
j )P ([Z]N−1

j

(1→r)
)
]
}∣
∣
∣
∣
∣
ǫ1=0

(17)

The latter equality comes from using eq. 6, which ’blocks’ the

dependence backwards. Eq. 17 shows thatǫi does not appear in
∂FN

∂ǫj

∣
∣
∣
ǫj=0

for i < j, therefore∂ki+1FN

∂ǫ
ki
i

∂ǫj

∣
∣
∣
∣
ǫj=0

= 0 andF~k
N = 0.

We are now ready to prove our main theorem:

Proof:

Let ~k = [k]N1 with ω(~k) = k. Define its ’length’ asl(~k) =

N + 1 − minki>1{i}. It easily follows from lemma 3 that

F
~k
N 6= 0 ⇒ l(~k) ≤ ⌈k+3

2 ⌉ − 1. Thus, according to lemma 2:

F
~k
N = F

(k
N−⌈

k+3
2

⌉+1
,..,kN )

⌈ k+3
2 ⌉

(18)

for all ~k’s in the sum. Summing on allF~k
N with the same

’weight’ gives C
(k)
N = C

(k)

⌈ k+3
2 ⌉

, ∀N > ⌈k+3
2 ⌉. But from

the analyticity of CN and H̄ near ǫ = 0 it follows that

limN→∞ C
(k)
N = C(k), thereforeC(k)

N = C(k), ∀N ≥ ⌈k+3
2 ⌉.

III. C ONCLUSION

Our main theorem sheds light on the connection between

finite and infinite chains, and gives a practical and straightfor-

ward way to compute the entropy rate as a series expansion

in ǫ up to an arbitrary power. The surprising ’settling’ of the

expansion coefficientsC(k)
N = C(k) for N ≥ ⌈k+3

2 ⌉, hold

for the entropy. For other functions involving only conditional

probabilities (e.g. relative entropy between twoHMPs) a

weaker result holds: the coefficients ’settle’ forN ≥ k. One

can expand the entropy rate in several parameter regimes. As

it turns out, exactly the same ’settling’ as was proven in Thm.

1 happens in the ’almost memoryless’ regime, whereM is

close to a matrix which makes theXi’s i.i.d. This and other

regimes, as well as the analytic behavior of theHMP ([8]),

will be discussed elsewhere.
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