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Abstract—The choice of step-size in adaptive blind channel iden-
tification using the multichannel least mean squares (MCLMS) al-
gorithm is critical and controls its convergence rate, stability, and
sensitivity to noise. In this letter, we derive the expression for an
optimal step-size in the Wiener sense and investigate its proper-
ties. An implementation technique for the Wiener solution of the
self-adaptive step-size is presented, and it is shown that significant
performance improvements are obtained compared to existing ap-
proaches in the presence of noise.

Index Terms—Blind channel identification (BCI), multichannel
least mean square (MCLMS) algorithm, Wiener step-size.

1. INTRODUCTION

LIND channel identification (BCI) has several appli-

cations in various fields of engineering, in particular
where blind deconvolution or source separation is required.
Examples include communications systems where the received
signal must be equalized to obtain the transmitted signal [1],
geophysics where the reflectivity of the earth layers is explored
by extracting seismic signals from the sensor observations
[2], and speech dereverberation where the acoustic impulse
responses are estimated blindly from reverberant speech, and
then deconvolution is performed to remove the effects of the
room [3].

Several blind multichannel identification algorithms have
been reported in the literature. A review of many existing
methods can be found in [4]. Recently, a class of adaptive
approaches based on the cross-relation between channels [5]
was proposed, with implementations in the time-domain [6]
and in the frequency-domain [7]. Such algorithms are attractive
for real-time applications with the simplest method being
multichannel least mean squares (MCLMS). One of the draw-
backs of MCLMS is the difficulty in choosing the step-size
for adaptation that governs the rate of convergence and the
steady-state behavior. Furthermore, selection of the step-size
normally depends on the input signal power. Therefore, it is of
interest to find a self-adaptive step-size that is optimal in some
sense.

Previous work on nonblind adaptive system identification has
shown that deployment of variable and optimal step-sizes results

Manuscript received December 21, 2005; revised March 24, 2006. This work
was supported by the Engineering and Physical Sciences Research Council,
U.K. The associate editor coordinating the review of this manuscript and ap-
proving it for publication was Dr. Israel Cohen.

P. A. Naylor and N. D. Gaubitch are with the Department of Electrical and
Electronic Engineering, Imperial College London, London SW7 2AZ, U.K.
(e-mail: ndg @imperial.ac.uk; p.naylor@imperial.ac.uk).

M. K. Hasan is with the Department of Electrical and Electronic Engi-
neering, Bangladesh University of Engineering and Technology, Dhaka-1000,
Bangladesh (e-mail: khasan@eee.buet.ac.bd).

Digital Object Identifier 10.1109/LSP.2006.876341

Additive .
Input Channels Noise Observations
| vi(n)
v
s(n) H(z) (Jr f——— z1(n)

i vz(n)
— v
Ha(2) 74,®__ 2a(n)

1 vam(n)
v .
————————-<}:>——————-——- xpr(n)

Fig. 1. SIMO system block diagram.
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in performance exceeding that of a fixed step-size (see, e.g.,
[8] and [9]). The first approach for optimal variable step-size
in BCI was presented in [10] for the unconstrained MCLMS,
where the optimal step-size is obtained at each iteration using
the instantaneous values of the channel and gradient estimates.

In this letter, we derive a general optimal step-size for the
unconstrained MCLMS algorithm, extending the previous ap-
proach to both noisy and noise-free cases. In a noise-free envi-
ronment, the optimal step-size in [10] becomes a special case of
our proposed Wiener step-size. In the presence of noise, an un-
derlying assumption in [10] is invalid, and we show that, in such
cases, our optimal step-size can give a significant improvement.

The remainder of the letter is organized as follows. In
Section II, the problem of blind channel estimation is for-
mulated, and a summary of the MCLMS algorithm is given
in Section III. Section IV derives the optimal step-size, and
a technique for its implementation is discussed. Simulation
results are provided in Section V, and finally, conclusions are
drawn in Section VI.

II. BLIND CHANNEL IDENTIFICATION PROBLEM

In the single-input multiple-output (SIMO) system of Fig. 1,
a signal, s(n), is observed in a noisy multipath environment by
an array of sensors at a distance from the source. The signal
received at the 4th sensor is

z;i(n) = hl's(n) + v;i(n) (1)

where h; = [hio hi1 ... hLL_l]T is the L-tap impulse re-
sponse of the channel between the source and the ¢th sensor,
s(n) = [s(n) s(n —1) ... s(n — L+ 1)]T is the source signal
vector, and v;(n) is measurement noise at the ith sensor.

The aim of a blind channel identification algorithm is to form
an estimate h; = [h;o hi1 ... h;r1]7 of the impulse re-
sponses h;, using only the observations z;(n),: = 1,2,..., M.
This has been shown possible provided that the following iden-
tifiability conditions are satisfied [5]: 1) the channels do not
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share any common zeros, and 2) the autocorrelation matrix of
the source signal is of full rank.

III. MCLMS ALGORITHM FOR BCI
The multichannel LMS algorithm proposed in [6] and [10] is
based on the cross-relation between two channels, which in the
noise-free case is [5]
XT(TL)hJ = X?(n)hi,

2

ij=1,2,...,.M )

where x;(n) = [z;(n) z;(n — 1) ... z;(n — L 4+ 1)] is the
ith observation vector. Taking all sensor pairs into account, a
system of equations can be written

Rh=0 3)
where h = [hT hI ... h7/] T is a vector of the concatenated
impulse responses, and

Zi;ﬁl Rl'il'i _szm _Réerl
_Rl"1 2 Zi;éz Rl'il'i _RmM 2
R = .
_RENEM _RmzmM Zi;éM Rzizq'
“)

is a correlation-like matrix with

R.., = E{xi(n)x] (n)}, 4.j=1,2,...,M. (5
Thus, the impulse responses can be identified uniquely up to a
scaling factor by finding the eigenvector corresponding to the
smallest eigenvalue of R [5].

In the presence of noise, the cross-relation in (2) does not
hold, and an error function can be defined as [6]

eij(n) = x] (n)h; —x] (n)h; ©6)

and a cost function formulated as

M-1 M
Tn)=>"">" ein). @)
i=1 j=i+1

The optimal estimate of the channels is found by minimizing
J(n) with respect to h

hope = argmin E{.J(n)}, subjectto |[hl| =1  (8)
h

where E{-} is the expectation operator. The unit norm con-
straint shown here is often introduced to avoid the trivial es-
timate h = 0. However, it was shown in [10] that the trivial
solution can be avoided if the estimation vectors are initial-
ized appropriately, and therefore, we will use the unconstrained
MCLMS for the remainder of this letter.

The LMS adaptive algorithm finds the desired solution using
(11]

h(n +1) = h(n) — uV.J(n) )

where V is the gradient operator, and 4 is a positive step-size.
The instantaneous gradient estimate at time n has been shown
to be [6], [10]

V.J(n) = 2R(n)h(n) (10)

where (n) = [Bf () B () ... B ()]

vector estimate at time 7, and R(n) is the instantaneous esti-
mate of the matrix R at time n with R, ., (n) = x;(n)x] (n),
i,j =1,2,..., M.

Finally, substituting (10) into (9), the update equation for the
unconstrained MCLMS algorithm is

is the channel

h(n + 1) = h(n) — p2R(n)h(n). (11)

IV. WIENER SOLUTION OF THE SELF-ADAPTIVE STEP-SIZE

We would like to find the step-size, p(n), which minimizes
the misalignment at every iteration, given the current channel
estimate h(n). Consequently, we define the cost function

Ju(n) = E{Jh— oh(n+ DP[a(n)}  (12)

where « is the scaling constant inherent in BCI based on the
cross-relation and is assumed, for now, to be known. Minimizing
J.(n) with respect to p gives the optimal step-size at time n,

Hopt(n) = argmin, J,(n).
Substituting (9) into (12), the cost function becomes
Tu(n) = B{|lh — ah(n) + apVJ(n)|*[h(n)}
= E{|h|* - 2ah™h(n) + 2auh" VI (n)
—20°puh" (n)VJ (n) + o2 %[V I (n)]|?

+ o?||h” (n)||*|h(n)}. (13)

The optimal step-size in the MMSE sense is obtained from

9Ju(n)

=0.
o

(14)

Thus, using (13) and (14), we obtain the Wiener step-size

h”(n) — LnT

- = E{V.J(n)|h(n)}.
(VI (n)|2[h(n)} {VJ(n)|h(n)}

Mopt (n) (15)

As in the derivation of the LMS algorithm, the expected
values may be approximated by their instantaneous esti-
mates. Let VJ(n) and ||[V.J(n)|[*> be the instantaneous
estimates of the conditional expectations £{VJ(n)|h(n)} and
E{||VJ(n)||?|h(n)}, respectively. The optimal step-size is
then obtained by

oy _BDmVIm)
MOpt(n) - ||VJ(7’L)||2 ’Y( ) (16)
with
_ h"VJ(n)
= ST 7
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Fig. 2. Step-size behavior in the noise-free case for a) pq(n) and b) v(n),
which together form fiope ().

In the noise-free case, v;(n) = 0, V 4, and it can be assumed that
the gradient vector is orthogonal to the true solution at all times,
such that hT'V.J(n) & 0, as discussed in [10]. In this case, our
solution in (16) reduces to

h7 (n)V.J(n)

18
IO (1%)

pa(n) =

which is the result presented in [10] and can be seen as a special
case of the Wiener step-size in (15). Fig. 2 shows an example
plot of the optimal step-size components a) p(n) from (18)
and b) (n) from (17), which together form fiopt (1) (16). Note
that the first 20 samples (n = 0,1,...,19) in Fig. 2(a) have
been excluded from the plot since they are generally large and
shadow the fine detail that is of interest here. It is interesting to
note that the step-size p1(n) varies in the range 0-0.05 rather
than approaching zero with convergence as might be expected.
We note also that y(n) varies in a range very close to zero.

The assumption of orthogonality between the gradient and
the true solution does not hold when noise is present, i.e.,
hTVJ(n) # 0, and the approximation employed in (18)
becomes inaccurate, even when small amounts of noise are in-
troduced. Thus, v(n) is not zero and becomes more significant
as the SNR decreases. This can be seen in Fig. 3(b), where
~(n) is plotted for SNR = 20 dB. The examples in Figs. 2
and 3 were generated using the simulation settings described in
Section V.

In order to implement the optimal step-size in noisy condi-
tions, we need to estimate -y(n) as it requires knowledge of the
true impulse responses that are not available. Thus, we need to
form an approximate expression y(n) & ~v(n). It can be seen
that the first term of (16), and () will tend to equivalence as
the channel estimates h approach the true solution. This can also
be observed in Fig. 3, where after approximately 5 x10? itera-
tions, 111(n) is close to y(n). Therefore, the purpose of y(n) is
to attenuate the step-size, bringing it toward zero as the channel
estimates improve. Using this as motivation, we write

h7(n)V.J(n)

() = Bln) (19
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Fig. 3. Step-size behavior at SNR = 20 dB for a) g1 (n) and b) y(n), which
together form fiop(n).

where (3(n) is a weighting function that should slowly attenuate
the step-size as the adaptive filter converges. Replacing v(n)
in (16) with (19), an approximate Wiener step-size for noisy
conditions is obtained

h7 (n)V.J(n)
pz(n) = (1 —-B8n)) —=—p— (20)
A weighting function that was found to be suitable is
—J(n)Lo?
B(n) = exp (—(03 I) (1)

where o2 and o2 are the observed signal power and the noise
power, respectively. The expression in (21) highlights some of
the desired features of the weighting function: 1) it tends to unity
as the error tends to zero, 2) it tends to zero as the SNR tends to
infinity, and 3) it is dependent on the error signal and therefore
provides a means of tracking changes in the system.

V. SIMULATION RESULTS

Simulation results are presented to investigate the use of
the step-size parameters fiop (1), p1(n), and po(n) defined in
Section IV. For the experiments, we used three random chan-
nels of length L = 32, as shown in Fig. 4. The excitation signal
was white Gaussian noise, and the sampling frequency was
set to fs = 8 kHz. The normalized projection misalignment
(NPM) [12] was used as a performance metric

) ™

(22)

Using this measure, only the misalignment is accounted for, ig-
noring the effect of the arbitrary constant [12]. In all cases, the
adaptive algorithms were initialized with h(0) = [11 ... 1]%.
First, we considered the noise-free case. The unconstrained
MCLMS with update equation according to (11) was executed
with fixed and with variable optimal step-sizes. The results are
shown in Fig. 5, where the NPM is plotted against time for
a) a fixed step-size 1 = 0.02, b) a fixed step-size p = 0.01,
¢) the optimal step-size fiopt(n), d) the optimal step-size from
[10] p1(n), and e) the approximate optimal step-size o (n) in

h”h(n)

———" hn
h7 (n)h(n) ()

1
NPM(TI,) =20 10g10 m
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Fig. 4. Three random channels of length L = 32 used in the simulations.
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Fig. 5. Normalized projection misalignment in the noise-free case for the un-
constrained MCLMS with step-size a) p = 0.02,b) g = 0.01, ¢) fiope(n), d)
p1(n), and e) po(n).

(20). Fig. 5(a) and (b) demonstrates the difficulty in choosing a
fixed step-size since pn = 0.02 results in instability. As expected
for the noise-free case, all three implementations of the optimal
step-size perform uniformly, resulting in a monotonic conver-
gence.

Next, the case of additive noise was investigated for an ex-
ample case with SNR = 20 dB. The three implementations
of the variable step-sizes were employed with unconstrained
MCLMS. The resulting NPM is plotted against time iterations
n in Fig. 6 for a) the optimal step-size from [10] u1(n), b) the
approximate optimal step-size p2(n) in (20), and c¢) the op-
timal step-size fiopt(n). Two interesting observations can be
made from this: 1) the implementation with the general optimal
step-size fiopt (1) converges toward zero even under noisy con-
ditions and thus provides an indication of the obtainable NPM,
and 2) using approximations like that of (20) can provide a
significant improvement in terms of misalignment, as seen in
Fig. 6(b).

NPM (dB)

_60 | i i i i I i L
0 1 2 3 4 5 6 7 8 9
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Fig. 6. Normalized projection misalignment in the noisy case (SNR =
20 dB) for the unconstrained MCLMS with step-size a) p1(n), b) p2(n), and

0) fiopt(n).

VI. CONCLUSION

We have derived the Wiener step-size for the unconstrained
MCLMS algorithm for BCIL. This step-size is calculated at every
iteration. In order to implement the optimal step-size in noisy
environments, we have formulated an approximate Wiener step-
size. Simulation results have demonstrated that the proposed
self-adaptive step-size gives significantly better NPM compared
to a fixed step-size or the optimal step-size algorithm in [10].
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