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Abstract—This letter examines the influence of low-bit quantiza-
tion on moment estimators with special emphasis on the 1-bit case.
Moment estimators are especially useful if no prior knowledge on
the distribution of the observations is available or if an ML ap-
proach is analytically intractable or computationally infeasible. In
order to arrive at analytical results for this very general case, we
focus on a dithered quantization scheme that allows us to specify
and analyze its asymptotic behavior. We show that consistency can
be retained under mild conditions, and furthermore, we quantify
the asymptotic variance. Additionally, we illustrate how to find an
estimator that achieves the best performance possible in this sce-
nario. Finally, we bolster our analytical results with simulations
for the illustrative case of an AR(1) process and provide a com-
parison with undithered schemes. A conclusion summarizes this
letter’s contribution and explores possible areas of application.

Index Terms—Distributed estimation, method of moments, po-
larity-coincidence, quantization.

I. INTRODUCTION

QUANTIZATION is ubiquitous in a plethora of engineering
systems and devices, but its effects require careful anal-
ysis if performance bounds are to be established. This

letter focuses on the influence of low-bit quantization on the
performance of moment estimators. The reasons for performing
such quantization are numerous. As a time-domain example,
consider equipment limitations arising in the processing of high-
frequency signals. Here, 1-bit quantization is very useful since it
drastically simplifies floating-point multiplications to counting
polarity-coincidences (equal or opposite signs). On the other
hand, quantization is indispensable in the spatial domain, for
instance, in sensor networks, where it is motivated by commu-
nication constraints between nodes.

A. Relevant Work

An excellent overview on quantization is contained in [1] and
[2]. For the special case of a Gaussian signal, results for the 1-bit
case date back to [3] and [4]. The recovering of correlations
based on quantized and dithered signals is discussed in [5] and
[6]. In [7], the effects of 1-bit quantization on digital receivers
are analyzed. In the distributed estimation context, the effects of
quantization are considered in [8], [9], and references therein.
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Fig. 1. Dithered quantizer under consideration.

In [10], a distributed estimation problem for ML estimation is
discussed. To the best of the authors’ knowledge, there has not
been a study on effects of quantization on moment estimators.

B. Main Contribution

This letter analyzes how quantization affects the accuracy of
moment estimators. In particular, we focus on a dithered quan-
tizer and investigate its asymptotic properties. The introduction
of dithering is motivated by the fact that without dithering, it
seems intractable to analyze the quantizer’s properties analyti-
cally. The Gaussian case is an exception we will address later.

The dithered quantizer [5] under consideration in this letter is
depicted in Fig. 1. Using this scheme, it is possible to establish
relations between the unquantized and quantized correlation es-
timates that allow for determining the asymptotic properties. We
show that under mild conditions, a moment estimator based on
the quantized signal yields consistent estimates. Furthermore, a
lower bound can be specified and attained by optimizing a non-
linear cost-function, a method sometimes referred to as “mo-
ment matching.” Our results are corroborated by simulations for
the special case of an AR(1) process with different innovation
processes.

The remainder of this letter is organized as follows: our an-
alytical results for the general case are addressed in Section II.
In Section III, simulation results for the example of an AR(1)
process bolster our results and compare the performance to the
unquantized and the undithered case. A conclusion summarizes
this letter’s contributions and addresses possible areas of appli-
cation.

II. ANALYTICAL DEVELOPMENT

This section develops analytical results to assess the influence
of quantization on moment estimators. Specifically, we consider
estimators for the parameter vector solely based on the corre-
lation estimates of the quantized observations, i.e., we need
to find an estimator such that

(1)

In the next section, we establish a simple relation between the
correlations of the quantized process and the correlations
of the unquantized one. In this way, if a consistent estimator

is known for the unquantized case, the same esti-
mator is also consistent in the quantized case (other prop-
erties need not translate, though).
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A. Quantization Setup

In particular, we consider the dithered quantizer depicted in
Fig. 1. The term dithering refers to the addition of two random
signals before performing quantization. We thus arrive at the
signals

(2)

(3)

where and are independent, white dithering processes
uniformly distributed within and . It is shown in [5] that,
if is an arbitrary wide-sense stationary (up to the fourth-order
moments) random process bounded by , then the fol-
lowing result holds for the correlations:

(4)

and the fourth-order mixed moment is given by

(5)

It has to be emphasized that, thanks to dithering, no significant
restrictions need to be made for the input process; boundedness
and weak-stationarity up to the fourth-order moments are suf-
ficient. However, while the dithering makes it possible to deal
with a very general class of input processes at the same time, it
results in a higher variance of the estimate, as will be shown in
the next sections.

B. Consistency and Asymptotic Performance

Before looking at the asymptotic performance of the esti-
mator , it is important to determine whether the estimates
remain consistent. Indeed, this is the case [11] as long as 1) the
correlations are consistently estimated and 2)
is a continuous function with respect to the ’s.1 The first con-
dition is easily satisfied in our context since the correlations are
estimated by sample correlations of and

(6)

which are known to be consistent. As a result, consistency is
retained as long as the estimator is a continuous function, which
we assume hereafter.

If consistency is guaranteed, the estimator’s performance still
needs to be computed quantitatively. The asymptotic variance
of the estimate depends on the asymptotic covariance matrix

of the quantized moments as well as the Jacobian of the
estimator evaluated at . In particular, it can be
shown that the performance of a moment estimator is given by
[11, Thm. 3.16]

(7)

1Several regularity conditions apply; please see [11, p. 79].

In order to determine , we need to find the auto- and the cross-
covariances of . We start by looking at the former and get by
using (4) and (5)

(8)

(9)

Note that if we remove the exception from the double-sum
in (9) by adding the term and subtracting it again, we see that
the variance of is given by 1) the variance of the unquantized
sample estimator and 2) additional terms due to dithering and
quantization

(10)
The covariances are computed by

(11)

(12)

(13)

(14)

Again, this simplifies to

(15)

Since all terms in (10) and (15) decay to zero as , the
asymptotic covariance matrix of can be written in terms
of the covariance of the unquantized sample estimator and an
additional term due to dithering and quantization

(16)

C. Moment Matching

Having computed the asymptotic covariance matrix for ,
we can analyze the effect of dithering on the final estimate .
The asymptotic variance of the estimator (7) is lower bounded
[11, Lemma 3.1]

(17)
where denotes the Jacobian of with re-
spect to . Given an estimator , we can thus compute the
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above expression to check whether the bound is achieved. More-
over, the bound can always be attained by considering “moment
matching.” Specifically, consider an estimator that maximizes
the nonlinear cost function

(18)

with respect to . The above estimator is guaranteed to achieve
the bound [11, p. 84], [12] and can, for instance, be implemented
using Newton’s method.

We have thus shown in this section that even in the non-
Gaussian case, analytical expressions for the performance of
the estimators based on quantized signals can be obtained. The
lower bound of such moment methods is always achieved by
optimization of the nonlinear cost function (18). In practice,
other estimators might be preferred for simplicity, if their per-
formance is close to the bound.

III. EXAMPLE: AR(1) PROCESS

This section corroborates the analytical results of the last sec-
tion with simulations for the simple yet illustrative case of esti-
mating the regression parameter of an AR(1) process. Conse-
quently, we consider the random process

(19)

where denotes the innovations process with variance
.2 It can easily be verified that the correlation and the

normalized correlation coefficient of this process are given
by

(20)

It is well known that the above correlations are consistently es-
timated by sample averages

(21)

Finally, the parameter can be estimated using the Yule–Walker
equations, resulting in

(22)

and this estimator will serve as a benchmark for evaluating the
performance of the subsequent quantized schemes.

For the case of a Gaussian innovations process, we obtain
and as well as the

following expression for the asymptotic covariance matrix by
evaluating the expectation in (10) and (15) to find . The asymp-
totic covariance of the unquantized estimator is well known
[11, p. 81]

(23)

2This choice for the variance is motivated by the fact that if � is chosen
independent of a, then the range of x expands with a. Consequently, we would
need to adjustA properly for increasing a, which leads to an unfair comparison.

A similar expression can be obtained for the non-Gaussian case
by including the cumulants when evaluating (10) and (15).

The Jacobian of the Yule–Walker estimator is given by
. Consequently, evaluating its performance and com-

paring to the bound (17) gives the interesting result that in con-
trast to the unquantized case, the Yule–Walker estimator is not
optimal if quantization is included. For other innovation pro-
cesses, similar results can be obtained (only has to be modi-
fied).

Besides comparing the performance to the moment estima-
tors based on the unquantized moments, it is also illustrative to
consider the quantized case without dithering. In particular, it is
interesting to compare the dithered scheme to well-known po-
larity-coincidence methods [13]. These schemes are based on
the fact that for a Gaussian innovations process, the correlations
before and after a hard-limiter are related by

(24)

This relation can be used for relating and . While it ap-
pears to be intractable to find the asymptotic covariance matrix
of (in the case of no dithering), the bias and the variance of
the estimate can be quantified in the special case of 1-bit quan-
tization by noting that the binary observations are binomially
distributed. Carrying out the analysis gives the result that the
estimator is asymptotically consistent with the following mean
and variance [4]:

(25)

(26)

where

(27)

However, the above analysis is based on a Gaussian inno-
vations process and does not hold for arbitrary distributions.
Nevertheless, it is interesting to compare both estimators to see
the effects of dithering in this special example. Later, the non-
dithered estimator above will also be used for non-Gaussian sce-
narios to determine its robustness to departure from the assump-
tion of Gaussianity.

A. Simulation Results: Gaussian Innovations

The simulation results for the case of a Gaussian innovations
process are shown in Fig. 2. While strictly speaking, a Gaussian

does not satisfy the assumption of boundedness, our results
hold with great accuracy for large enough ( suffices
in practice).

While the dithered quantizer shows a significantly higher
variance compared to the unquantized estimator, most of the
performance loss, however, is due to the dithering and not the
quantization (by comparing to the non-dithered quantizer for
the Gaussian case). Ultimately, the dithering is the price we pay
for obtaining a scheme that works for any distribution, provided
it is bounded and weakly stationary.

In the special case of a Gaussian distribution, the non-dithered
estimator (24) shows a very good performance. However, we
have to keep in mind that this estimator is specifically tailored
to the Gaussian case. Hence, the better performance is not sur-
prising.
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Fig. 2. Performance for the Gaussian case for a = 0:5 and A = 3:5. The
dashed lines correspond to the asymptotic performance (derived analytically) of
the respective estimators. While the Yule–Walker estimator (Y-W) based on the
quantized samples is non-optimal, its performance is very close to the optimal
moment matching (Mo-Ma). The non-dithered Y-W estimator is based on the
arcsin-law.

Fig. 3. Performance for the non-Gaussian case for a = 0:5 and A = 1. The
dashed lines correspond to the asymptotic performance (derived analytically) of
the respective estimators. While the dithered quantizer shows a similar perfor-
mance compared to the Gaussian case, the undithered scheme (now used heuris-
tically) performs very poorly and does not even yield consistent estimates.

It is crucial for the dithered scheme to choose as small
as possible. Our analytical results for the asymptotic covari-
ance matrix show that the additional variance of the estimate
increases with .

For the dithered quantizer, we can compare the performance
of the simple but non-optimal Yule–Walker estimator to the op-
timal moment-matching based estimator. For large , both our
analytical and our simulation results show that the performance
of both estimators is almost identical. Thus, in a practical im-
plementation, the Yule–Walker estimator should be preferred
thanks to its simplicity in implementation. For small to medium

, however, moment matching performs significantly better.
This can be attributed to the specific form of the Yule–Walker
estimator (small fluctuations in the denominator of (22) can re-
sult in large changes of ).

B. Simulation Results: Uniform Innovations

The simulation results for the case of an AR(1) process with
uniform innovations is shown in Fig. 3. The performance of the
different schemes changes drastically.

The performance of the dithered 1-bit quantizer improves
compared to the Gaussian case. This is due to the different dis-
tribution and choice of the dithering range .

The performance of the non-dithered 1-bit quantizer is very
poor, since its assumption of a Gaussian distribution is violated,
and its employment is just based on heuristics. In particular, we
have to note that consistency is lost, since the variance no longer
decreases with the number of observations .

For the dithered scheme, the Yule–Walker estimator is again
very close to the bound. Due to simplicity, it should again be
preferred when it comes to an implementation.

IV. CONCLUSIONS

In conclusion, we have evaluated the impact of quantization
on moment estimators based on second-order moments. We
have shown that under mild conditions, consistency is retained
and have evaluated the asymptotic variance of the estimate.
Furthermore, there exists a lower bound on the performance
that can always be achieved by “moment matching.”

In the Gaussian case, our quantitative analysis shows that
dithering is associated with a significant penalty in terms of the
estimate’s asymptotic variance. However, apart from this special
case, dithering is indispensable if we are interested in a scheme
that works for any distribution.

In practice, the usability of this scheme depends on the de-
sired application. Especially in time-domain applications, large
values of can be realistic, given that every observation is rep-
resented by only one bit. In the spatial domain, however, in-
creasing might be prohibitive. In a sensor network, increasing

by a factor of ten possibly means to increase the number
of sensors by this factor, which might not be practicable at all.
Thus, in the spatial domain, performing finer quantization (and
possibly avoiding dithering altogether) might be preferable.
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