IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 4, APRIL 2007

279

Nonlinear System Identification With Composite
Relevance Vector Machines
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Abstract—Nonlinear system identification based on relevance
vector machines (RVMs) has been traditionally addressed by
stacking the input and/or output regressors and then performing
standard RVM regression. This letter introduces a full family of
composite kernels in order to integrate the input and output infor-
mation in the mapping function efficiently and hence generalize
the standard approach. An improved trade-off between accuracy
and sparsity is obtained in several benchmark problems. Also, the
RVM yields confidence intervals for the predictions, and it is less
sensitive to free parameter selection.

Index Terms—Composite kernels, nonlinear system identifica-
tion, relevance vector machine (RVM).

I. INTRODUCTION

UTO-REGRESSIVE and moving average (ARMA) dig-

ital filter structures are commonly used to build functional
relationships between related discrete time processes (DTPs)
when the function that relates both processes is linear and time
invariant [1]. However, nonlinear behavior can be observed in
many practical situations, and general nonlinear models, such
as artificial neural networks or fuzzy algorithms, are alterna-
tively used [2]. A powerful nonlinear technique for learning-
from-samples problems is the support vector machine (SVM)
[3], which was originally presented as an effective method for
pattern classification [3]. The support vector regression (SVR)
is the SVM implementation for regression and function approx-
imation [4], and it has also been previously used for nonlinear
system identification [5][6], but the time series structure of the
data was not scrutinized. In [7], SVM was explicitly formulated
for modeling linear time-invariant systems fulfilling and ARMA
difference equations (linear SVM-ARX), and then it was ex-
tended to a general framework for linear signal processing prob-
lems [8] and for nonlinear SVM-based modeling [9].

Despite the good performance yielded by SVM schemes,
some limitations still remain: 1) by assuming an explicit loss
function (usually, the e-insensitive loss function), one assumes
a fixed distribution of the residuals; 2) several free parameters
must be tuned, usually with cross-validation methods, which re-
sult in time-consuming tasks; and 3) very importantly, sparsity
is not always achieved, and a high number of support vectors is
eventually obtained.
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These problems of SVR and SVM are efficiently alleviated
by the relevance vector machine (RVM), introduced by Tip-
ping [10]. The RVM constitutes a Bayesian approximation for
solving nonlinear models. The RVM follows a different infer-
ence principle from the one followed by SVM, and it has yielded
good trade-off between accuracy and sparsity of the solution.
In addition, RVM can produce probabilistic outputs (and hence
they theoretically capture the uncertainty in the predictions),
and they are less sensitive than SVM to setting of the free pa-
rameters, which is particularly interesting when working with
multiple kernel machines as the number of free parameters in-
creases. However, to the authors’ knowledge, the use of RVM
for nonlinear system identification and time series prediction is
limited to a few works [11], and in all these cases, the approach
consisted in stacking the input and output DTP into a training
vector and then applying the traditional RVM formulation. This
approach, although powerful, does not consider the input-output
DTP relationships in the modeling, which may lead to subop-
timal results.

In this letter, we introduce a general class of RVM-based
system identification algorithms. Our proposal includes the use
of composite kernels and shows that the previous stacked ap-
proach is a particular case. Several algorithms for nonlinear
system identification are presented, which account for the input
and output time processes either separately, jointly, or both,
thus allowing different levels of flexibility and sophistication for
model development. The proposed composite kernels have been
presented in [9] for SVM-based modeling. Here, their suitability
for the sparse Bayesian framework is analyzed from theoretical
and simulation considerations.

II. SYSTEM IDENTIFICATION WITH THE
RELEVANCE VECTOR MACHINE (RVM)

Assume a nonlinear system whose input and output are DTP
{x,} and {y,}. Let vectors y,, 1 = [Yn—1,Yn—2,--,Yn_pr|] "
and z,, = [Tpn,Tp_1,.-- ,xn_Q+1]T denote the states of input
and output DTP at time instant n. The nonlinear RVM-based
system identification procedure is traditionally conducted by
using the standard RVM regression algorithm with the concate-
nation of input and output states, z, = [y, ;,z[]T.

In the RVM formulation, given a corpus of training samples
{z; f\;1 € RY withd = P+ Q — 1, and given their corre-
sponding output targets {y; } ¥, € R, the outputs of an extended
linear model are a linear combination of the response of a set of
M basis functions (or kernels), as follows:

M
Ui = ijK(zi,zj) +w, = wTk(zi) + w, )
Jj=1

where w = [w,, w1, ..., wy]" are the weights in the model,
w, represents the bias in the regression function, K (z;, 2;) is

the response of the jth basis function to input sample z;, and
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k(z;) = [K(zi,21), K(2i,22), ..., K(2i,21)] " are the kernel
vectors. Let K = {K(z;,2;)} be the N x (M + 1) mapping (or
kernel) matrix among all training samples. The obtained error
(or residual) signal is expressed as e; = y; — §; ~ N(0,02).
By also assuming that the targets are independent, the likelihood
of the target vector y can be written as

przlwa

Once the basis functions of the model described in (1) are de-
fined, a maximum likelihood approach could be used for es-
timating model weights w. However, risk of overfitting arises,
and a priori models on weight distribution are introduced in the
Bayesian framework [12]. In the RVM learning scheme [13],
a Gaussian prior distribution of zero mean and variance o; =
1/a7,  is defined over each weight

M
o 1
plw|a)= HN w; |0, a; :H,/ﬁexp{—éajw?} (3)
j=1

where the key to obtain sparsity is the use of M independent
hyper-parameters & = [a,, a1, ...,an] ", one per weight (or
basis function), which moderate the strength of the prior. After
defining the prior over the weights, we must define the hyper-
priors over a and the noise variance o2.

Now, with prior (3) and likelihood distribution given by (2),
the posterior distribution over the weights is Gaussian, and it
can be computed by using Bayes’ rule

o~ lly—Kw|?/(202)

(2mo2)N

2)

y|w0

p(ylw, o®)pw|a)
p(y e, o?)

pwly, a,0®) = Nwlp,2) @

where the covariance and the mean are, respectively, given by

S=(K'K+A)™" and p=0"2ZK'y (5)
with A = diag(a). Hence, the likelihood distribution over the
training targets, given by (2), can be “marginalized” by inte-
grating out the weights to obtain the marginal likelihood for the
hyperparameters

Py | e 0%) = / Py |w,0%)p( | a)dw ~ N(0,C)  (6)

where the covariance is given by C = 0?1 + KA~'K . For
computational efficiency, the logarithm of the evidence is max-
imized

1 _
logp(y |, 0%) = ~5 (M10g27r +log|C|+y'C 1y) 7

which is commonly done using the standard type-II maximum
likelihood (ML) procedure [12].

In the RVM learning scheme, the estimated value of the model
weights is given by the mean of the posterior distribution in (4),
which is also the maximum a posteriori (MAP) estimate of the
weights. The MAP estimate of the weights depends on the value
of the hyper-parameters a and of the noise 2. The estimation
of these two variables (& and 62) is obtained by maximizing the
marginal likelihood in (7). The uncertainty about the optimal
value of the weights, given by (4), is used to express uncertainty
about the predictions made by the model, i.e., given an input
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Z«, the probability distribution of the corresponding output v/,
is given by the (Gaussian) predictive distribution

(Y | 20 @,67) = / D(ye | 20, 6%)plw |y, &, 6%)dw (8)

which has a Gaussian form, p(y. | zs,&,6%) = N(y.,02),
where the mean and the variance (uncertainty) of the prediction
are, respectively

e =k (z)p and o02=62+k'(z.) T k(z.). (9
In the iterative maximization of marginal £(«) in (7), many of
hyper-parameters «; tend to infinity, yielding a posterior distri-
bution (4) of the corresponding weight w; that tends to be a delta
function centered around zero. The corresponding weight is thus
deleted from the model, along with its associated basis func-
tion. The remaining examples with nonzero associated weight
are called the relevance vectors (RVs), and they resemble the
support vectors in the SVM framework. However, RVM are typ-
ically more sparse than SVR.

III. CoMPOSITE KERNELS FOR RVM SYSTEM IDENTIFICATION

The RVM algorithm for nonlinear identification presented be-
fore does not represent an ARX model in a feature space, since
the used data are the transformed concatenation of the input and
output states. In this section, we exploit the direct sum of Hilbert
spaces [19] to introduce a family of composite kernels in the
RVM formulation that will allow us to analyze the explicit form
of the ARX process in feature spaces. These composite kernels
have demonstrated good capabilities in the context of SVM ap-
plied to speech processing [14] and image classification [15]. In
[9], the SVM-based system identification problem with kernels
was addressed. Here we extend it to the sparse Bayesian frame-
work, in which some attractive additional properties are avail-
able, such as the improved sparsity of the solution and the con-
fidence intervals provided for the predictions. The idea under-
lying this approach consists of splitting the information content
of kernel matrix into AR and MA components. This approach
not only will yield separate forms for the point predictions and
uncertainties but also will allow different degrees of sophisti-
cation in kernel engineering and analysis. Also, the curse of di-
mensionality of stacking vectors is alleviated with our proposal.

A. Explicit ARX in the Feature Spaces

Both the input and the output DTP state vectors can be sepa-
rately mapped to H,, H,, by using two possibly different non-
linear mappings, K, ( n) t R? — M, and k,(y,,) : R — H,,
respectively. Two linear models in H,. and Hy can be summed,
yielding the difference equation

Yo = a k(Y1) +0 k() +€n (10)
where b = [by,...,bg,]" is the moving average (MA) com-
ponent of the digital filter in the RKHS, which yields the eX-
ogenous (X) component of the model, and a = [ay,...,a Hy]T
is the autorregressive (AR) component of the model in the
mapped space, where H,, and H, are the corresponding feature
space dimensions. Note that defining the kernel vectors k,.(z.,)
= [K(Zn,zl), K(zn7$2)7 B 7K(zn7$1\1)]T and ky(yn—l)
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= [K(yn—17 y1)> K(yn—17 y2)7 ) K(yn—lvy]\l)]—r’ an ex-
plicit mapping matrix can be built by adding the AR and X
mapping matrices

K=K..+K,, (11)

where k., = {K(z;,z;)} and k,, = {K(y;_1,9y;_1)} are the
N x (M + 1) design matrices for the input and output DTP, re-
spectively. This kernel matrix K can be included in the standard
RVM formulation (9), leading to the so-called RVMs .

B. Cross-Information Composite Kernel

Note that (11) produces an apparent uncoupling between
the input and the output DTP in the final solution, with no
explicit consideration of the (maybe relevant) cross information
between them. Therefore, the RVMs;, model could be limited
in some of the cases when strong cross information is present.
In these cases, an ARX model considering the input and output
components simultaneously could improve the results. By
making use of the sum of Hilbert spaces property (see the
Appendix), the kernel components are

K(Zi7zj) = sz(xiyxj) + Kyy()’i—h)’j—l)
+Kmy(xi,y;—1) + Kyz(y;'—l'/xfli) (12)

which can be notationally simplified as

K=K, +K,, +K,, +K,,. (13)

As before, the use of this mapping function in the generic RVM
system identification algorithm (9) produces the so-called
RVMy;, estimation algorithm (see the Appendix for the proof).

C. Extended Composite Kernels

Collaborative combinations of the mapping strategies pre-
sented before can be used by just considering the combination
between the RVM and the RVMs - structures

K(z’i7zj) = Kyy(yi—17yj—l) + KZI(zL‘TJ) +KZ(ZHZ])(14)

which we call RRVMs i algorithm, or the combination between
the RVM and the RVM,x structures

K(Ziﬂzg) = Kyy(:’li—b:’/j—l) + Kza:(zi7zj)
+sz($§,y}_1) + Kz(zivzj) (15)

which we call RRVMy i algorithm (see the Appendix).

IV. EXPERIMENTAL RESULTS

In this section, we compare the performance of the standard
RVM and the RVM-ARX formulations in several examples. In
order to obtain a model, the form of the mapping matrix must be
defined. In the RVM framework, K must not necessarily fulfil
Mercer’s condition (as it occurs in the SVR case). Nevertheless,
in this letter, we focus on the radial basis function (RBF) kernel
is defined as K (z;,z;) = exp(—||zi — z;||*/(202.,)), where
of,. € RT represents the variance (length scale or width) of the
kernel and constitutes the free parameter to be tuned for each
kernel. Additionally, model order P must be tuned. An exhaus-
tive search among all free parameters is computationally unfea-
sible. Therefore, a non-exhaustive iterative search strategy (7" it-
erations) was used here. At each iteration, a sequential search of
the minimum cross-validation error on each parameter domain
is performed by splitting the range of the parameter in K points.
Values of 7' = 3 and K = 20 exhibited good performance in our

nMSE
&
N

---RVM
-0.5 —— RVMzK
—e—RRVM,,
06 —=—RWM,
—a—RRVM,
-07 4 6 8 10 12

-10log, (5,)

Fig. 1. nMSE as a function of additive noise of power o, for all models.

simulations. All MATLAB source code of this letter is available
in http://www.uv.es/gcamps/arx_rvm/ for the interested reader.

A. Nonlinear Robust System Identification

We consider the single-input single-output system originally
proposedin [16], givenby 4, = (0.8—0.5exp(—42_1)) Yn_1—
(0.3 + 0.9exp(=y2 1)) Yn_2 + 0.1 sin(7y,, 1) + e, where
en 1S a Gaussian distributed random signal of zero-mean and
tunable variance, o,,, which was changed between 0 and 1. We
generated a reduced training set containing 50 samples, and the
following 1000 samples were used for testing. This scenario is
intended to illustrate robustness to a low number of training
samples and noise simultaneously. The five-fold cross-valida-
tion method was used in the training set. Averaged results over
100 realizations for the test set are shown in Fig. 1. Both RRVM
models show the best performance (the most accurate being
RRVM, ), and a clear difference is observed with respect the
standard RVM model, especially significant in high signal-to-
noise ratios (SNRs). A certain trade-off between order and spar-
sity was observed for all methods but without dramatic differ-
ences (results not shown). In [17], the same system was con-
sidered, and a restriction was imposed to work with o,, < 0.2,
which is equivalent to SNR > 7 dB. In these cases, the proposed
methods yield their best performance.

B. Mackey—Glass Time Series

We test the presented models performance in the standard
Mackey—Glass time series prediction problem, which is well
known because of its strong nonlinearity. This classical high-di-
mensional chaotic system is generated by the delay differential
equation: dz/dt = —0.1z,, + 0.2z,,_A /(1 + 0 ,), with de-
lays A = 17 and A = 30, thus yielding the time series MG17
and MG30, respectively. We considered 500 training samples
and used the next 1000 for free parameter selection (validation
set). Results are shown in Table 1.

The methods proposed here outperform standard RVM, espe-
cially significant for the MG17 time series. In the case of MG30,
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TABLE I
RESULTS FOR THE MACKEY—GLASS TIME SERIES PREDICTION PROBLEM

[ MG17

[ RVYM | RVM, ] RRVM,,| RVM,;] RRVM,
nMSE [ -1.687 [ -2.055 [-1.976  [-2.080 [-2.088
I3 8 14 12 13 13
bm 0.0010 | 0.0008 | 0.0007 | 0.0006 | 0.0007
%RVs || 37.88 | 2432 | 2997 | 2551 |24.07

MG30

| RVYM | RVM, 4] RRVM, x| RVM, ;] RRVM,
nMSE [ -1.257 [-1293 [-1296 [ -1.298 [-1.299
P 6 6 6 6 6
& 0.0092 | 0.0075 | 0.0065 | 0.0071 | 0.0064
%RVs || 1034 | 1338 | 20.28 15.01 {2028

differences are not significant but still show a preference for
RVM, i -based models, and it suggests that this is a more com-
plicated system. Several interesting issues can be noticed. First,
the fact that this data set has virtually no output noise is better
detected with all composite methods, which yields much lower
estimated noise variance &,, than that provided by the standard
RVM. Second, the expected zero noise variance along with the
chaotic nature of the time series prevent sparsity from arising
in a trivial way. We observe, however, that the number of RVs
retained by the proposed methods is smaller than the standard
RVM in MG17, but in a scenario of increased dynamics com-
plexity (i.e., MG30), the higher number of RVs are needed to
attain competitive results.

Finally, it is worth commenting that unlike SVM-based
methods, RVMs yield predictive uncertainties. This good char-
acteristic of the method, however, has been recently related to
uncontrolled sparseness, and thus, a certain trade-off between
this and accuracy typically emerges [18].

V. CONCLUSION

This letter presented a full family of RVM-based methods for
nonlinear system identification. This technique not only results
in improved performance, but it also opens the field to the de-
velopment of other RVM-based algorithms by including a priori
knowledge about the problem in the model. Further work will
consider extension of this framework to other related kernel
methods, such as Gaussian processes.

APPENDIX
COMPOSITE KERNELS MAPPINGS

Cross-information kernel: Assume a nonlinear mapping
() into H,, and three linear transformations A; from ., to
‘Hi,+ =1, 2,3. Note, however, that in this case, z,, and y,, need
to have the same dimension for the formulation to be valid,
which can be forced by considering P/ = @' = max(P, Q).
Now suppose the following composite transformation corre-
sponding to the direct sum of Hilbert spaces:

k(z') = [Ap(z)T, Az0(y) ", As(p(z) +o(y) T]T.(16)
The obtained mapping matrix is

K=o (y)Rip(y)) + ¢ (})Ropp(z))+
¢ (yi_1)Rsp(z)) + ' (z))Rap(y;_,) (17)
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where R; = A A} + Aj A3, Ry = A, Ay + A] A3, and
R; = A;Ag are three (independent) definite positive matrices.
Extended composite mappings: Let us define the mapping

k(zn) = [¢y(yn—l)T7 ¢z(zn)T7 ¢z(zn)T]T'

Then, exploiting the direct sum of Hilbert spaces [19], it is
straightforward to demonstrate that the induced kernel matrix
is given in (14). Similarly, the mapping
k(z') = [A1p(z')", A20(y) T, As(p(a)
+oy) " 6.(2)"]"

leads to the RRVM, ¢ kernel given in (15).

(18)

(19)

REFERENCES

[1] L. Ljung, System Identification. Theory for the User, 2nd ed. Engle-
wood Cliffs, NJ: Prentice-Hall, 1999.

[2] O.Nelles, Nonlinear System Identification. From Classical Approaches
to Neural Networks and Fuzzy Models. New York: Springer, 2001.

[3] V.N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.

[4] A.J.Smolaand B. Scholkopf, “A tutorial on support vector regression,”
Statist. Comput., vol. 14, no. 3, pp. 199-222, 2004.

[5] K. Pelckmans, I. Goethals, J. De Brabanter, J. A. K. Suykens, and B.
De Moor, “Componentwise least squares support vector machines,”
in Support Vector Machines: Theory and Applications. New York:
Springer, 2005.

[6] M. Espinoza, J. A. K. Suykens, and B. De Moor, “Kernel based par-

tially linear models and nonlinear identification,” IEEE Trans Autom.

Control, vol. 50, no. 10, pp. 1602-6, Oct. 2005.

J.L. Rojo-AlvareZ, M. Martinez-Ramon, A. R. Figueiras-Vidal, M. de-

Prado Cumplido, and A. Artés-Rodriguez, “Support vector method for

ARMA system identification,” IEEE Trans. Signal Process., vol. 52,

no. 1, pp. 155-64, Jan. 2004.

[8] J. L. Rojo—Alvarez, G. Camps-Valls, M. Martinez-Ramén, E. Soria-
Olivas, A. Navia Vazquez, and A. R. Figueiras-Vidal, “Support vector
machines framework for linear signal processing,” Signal Process., vol.
85, no. 12, pp. 2316-26, 2005.

[9] M. Martinez-Ramén, J. L. Rojo-Alvarez, G. Camps-Valls, J. Muiioz-
Mari, A. Navia-Vazquez, E. Soria-Olivas, and A. R. Figueiras-Vidal,
“Support vector machines for nonlinear kernel ARMA system identifi-
cation,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1617-1622, Nov.
2006.

[10] M. E. Tipping, , S. A. Solla, T. K. Leen, and K.-R. Miiller, Eds., “The
Relevance Vector Machine,” in Advances in Neural Information Pro-
cessing Systems 12. Cambridge, MA: MIT Press, 2000.

[11] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selec-
tion,” IEEE Trans Signal Process., vol. 52, no. 8, pp. 2153-2164, Aug.
2004.

[12] A. O’Hagan, Bayesian Inference, Volume 2B of Kendall’s Advanced
Theory of Statistics. London, U.K.: Arnold, 1994.

[13] M. E. Tipping, “Sparse Bayesian learning and the relevance vector ma-
chine,” J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.

[14] B. Mak, J. T. Kwok, and S. Ho, “A study of various composite ker-
nels for kernel eigenvoice speaker adaptation,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing, May 2004, vol. 1, pp. 325-328.

[15] G. Camps-Valls, L. Gomez-Chova, J. Muifioz-Mari, J. Vila-Francés,
and J. Calpe-Maravilla, “Composite kernels for hyperspectral image
classification,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp.
93-97, Jan. 2006.

[16] S. Chen and S. A. Billings, “Neural networks for non-linear dynamic
system modelling and identification,” Int. J. Control, vol. 56, no. 2, pp.
319-346, 1992.

[17] Q. Song, L. Yin, and Y. C. Soh, “Robust adaptive identification of non-
linear system using neural network,” in Proc. IEEE Signal Process.
Soc. Workshop Neural Networks Signal Processing, Sydney, Australia,
2000, vol. 1, pp. 95-104.

[18] C. E. Rasmussen and J. Quifionero-Candela, L. De Raedt and S.
Wrobel, Eds., “Healing the Relevance Vector Machine through aug-
mentation,” in Proc. ICML, June 2005, pp. 689-696.

[19] M. C. Reed and B. Simon, Functional Analysis, ser. Methods of
Modern Mathematical Physics. New York: Academic, 1980, vol. 1.

[7

—



