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A Post-Processing Deconvolution Step for
Wavelet-Based Image Denoising Methods

Max Mignotte

Abstract—In this letter, we show that the performance of image
denoising algorithms using wavelet transforms can be improved
by a post-processing deconvolution step that takes into account
the inherent blur function created by the considered wavelet based
denoising system. The interest of the proposed deblurring proce-
dure is illustrated on denoised images reconstructed by shrinkage
of curvelet and undecimated wavelet coefficients. Experimental
results reported here show that the proposed post-processing
technique yields improvements in term of image quality and lower
mean square error, especially when the image is corrupted by
strong additive white Gaussian noise.

Index Terms—Curvelet, deblurring, deconvolution, image de-
noising, nonnegative Garrote shrinkage, undecimated wavelet
transform.

I. INTRODUCTION

OVER the last decade, there has been considerable interest
in wavelet-based denoising methods [1]–[5]. In these

schemes, the basic idea consists in projecting the noisy image
onto a properly selected orthogonal set of basis functions and,
before reconstruction, in applying a thresholding rule that will
tend to remove more noise (mostly represented by low wavelet
coefficients) than important image edge information (mostly
represented by high value coefficients).

Amongst the numerous existing wavelet transforms (WT) [6],
the most promising decomposition techniques, in the context of
image denoising, seem to be the undecimated wavelet (UDW)
[7] and the curvelet [5] transforms. Besides, one of the most
efficient rule for the above-mentioned thresholding step is the
so-called nonnegative Garrote shrinkage which offers several
advantages over both hard and soft shrinkages [8].

In order to further improve the denoising results, many re-
searchers have then proposed and studied (sometimes very so-
phisticated) ideas of variation on this, initially simple, basic de-
noising procedure. To this end, some of these techniques exploit
level-dependent or spatially adaptive threshold functions based
(for example) on the correlation or the a priori knowledge of the
statistical distribution of the wavelet coefficients to name a few.

In this letter, we will show that the performance of the basic
wavelet based image denoising procedures can be improved by a
simple post-processing iterative deconvolution step, taking into
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account the inherent blur function created by the sparsity con-
straint induced by the considered wavelet shrinkage operation.
The interest of the proposed procedure is herein illustrated on
denoised images reconstructed from the nonnegative Garrote
shrinkage rule of curvelet and UDW coefficients. Experimental
results reported here shows that this method yields improve-
ments in term of image quality and lower mean square error
(mse), especially when the image is corrupted by strong addi-
tive white Gaussian (AWG) noise.

II. PROPOSED APPROACH

Let us consider that the transformation from (the unblurred
original image to be recovered) to (the observed blurred
version after the considered wavelet-based denoising algorithm)
is described by the following degradation model,

(1)

where is the remaining corrupting additive noise, rep-
resents the nonlinear, nonstationary (i.e., spatially variant) blur
operator generated by the considered wavelet based denoising
process. In this model, this operator is clearly nonlinear (the
[WT-THRESHOLDING-INVERSE WT]1 operation on a sum of im-
ages is not the sum of [WT-THRESHOLDING-INVERSEWT] im-
ages). Besides, as already mentioned, this operator is also inher-
ently spatially variant since the thresholding operation is depen-
dant of the 2-D signal repartition. These properties make very
difficult any deconvolution and/or point spread function (PSF)
estimation method. By assuming that the operation “ ” can be
estimated, a simple method would consist in defining the de-
convolution problem as the search of the global minima of the
following energy function

(2)

which can be easily solved with a simple steepest descent pro-
cedure which moves the estimate iteratively in the negative gra-
dient direction, i.e., or equivalently
with the so-called Landweber iteration [9]

(3)

where , , is the step size of the iterative
gradient descent and (the coordinates

denoting the discrete pixel locations).

1i.e., the basic denoising method using a thresholding in the wavelet domain.
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Although the nonlinear and nonstationary blur generated by
the (Garrote) shrinkage operation on the wavelet coefficients
(before image reconstruction) is difficult to parametrically
estimate, the blur function “ ” nevertheless remains known
and can be numerically simulated. More precisely, the blur
degradation generated by a wavelet denoising system on a 2-D
signal is simply the [WT-THRESHOLDING-INVERSEWT] opera-
tion (w.r.t. the considered wavelet transform). In this way, let

be the [WT-THRESHOLDING-INVERSEWT] operator,
the Landweber iteration given by (3) can now be written

(4)

where since the generated blur degradation
is the same for an inverted image (also herein assumed to be
toroidal) and the hard constraint that each pixel value of

is in the interval [0,255] can also be efficiently added at
each iteration of this procedure.

Since the = [WT-THRESHOLDING-INVERSEWT] opera-
tion is dependant of the scale of the input signal, better results
will thus be obtained if we rescale, at each iteration, the residual
signal w.r.t. the scale of .

In this iterative unconstrained deconvolution approach, in
which the residual image provides the update direction of
the local gradient descent, is sufficiently close to the
optimal undegraded solution (because is already widely
denoised) to ensure the uniqueness and the reliability of the
final deblurred estimate. Nevertheless, one can also impose a
smoothness constraint to this iterative procedure in order to
make both the optimization problem well posed and to find a
better solution. Herein, we have also used, a sparsity constraint
by simply alternating between the Landweber iteration given
by (4) and a wavelet based denoising step (this regularization
strategy was also proposed in [10]).2 To this end, we have used
the considered wavelet-based and shrinking operation given by

with a low threshold value (smaller that the one used in
the initial denoising process since the image is already widely
denoised in this deblurring step).

III. EXPERIMENTAL RESULTS

The performance of the proposed deconvolution procedure
is herein illustrated on denoised images provided by the non-
negative Garrote shrinkage operation of curvelet and UDW co-
efficients. In all the experiments, we have considered the gra-
dient-descent iterative procedure defined in (4) with
and in which we impose, at each iteration, the rescaling of the
residual signal and the hard constraint that each pixel value is
in the interval [0,255]. The convergence criterion of the iter-
ative procedure is given by checking if the residual image is
lower than a given threshold, namely, we use

(combined with a minimum of three iterations).

2This regularization strategy makes well posed the optimization deconvo-
lution process by a priori promoting an acceptable deblurred image solution
having property of sparse frequential representation (in the wavelet domain w.r.t
the considered curvelet or UDW transform). This regularization strategy, al-
ready used in Bayesian restoration/deconvolution and tomographic reconstruc-
tion approaches, is equivalent to the use of a complexity prior [17] whose goal
is to penalize estimates with high complexity in a data-compression sense.

For the UDW-based denoised images, we constrain the
Landweber procedure by using, every each iteration, a
wavelet-based denoising step with a threshold value
and one scale level. For the curvelet transform, we use the
unconstrained iterative procedure since we have experimentally
found that the mse results are not sensitively improved by the
sparsity constraint. The overall algorithm is summarized in
pseudocode in Table I.

Algo 1: Deconvolution algorithm for wavelet-based image denoising methods.

A. WT Parameters

We have chosen parameters ensuring competitive denoising
results for each degradation models.

• For the curvelet transform, we have used the CurveLab
toolbox implementing the (wrapping 2.0.1. version) Fast
Discrete Curvelet Transform in C++ (written by Lexing
Ying) and available on-line at http://www.curvelet.org/.
We use, as parameters of this curvelet transform, five scales
(including the coarsest nondirectional wavelet scale), 12
angles in the second coarsest scale (and a curvelet is used
at the finest scale).

• For the UDW transform, we use four scales.
For the shrinkage operation, we have used the nonnegative

Garrote shrinkage function with (in order to ensure competitive
denoising results) for the curvelet transform and

for the UDW transform and for respectively
a AWG noise degradation model with .

B. Nonnegative Garrote Shrinkage

The nonlinear thresholding rule proposed in [17] and also
called the amplitude scale invariant Bayes estimator (ABE) rule
(related to the “nonnegative Garrote” function suggested by Gao
[8]) and which will be used in the UDW transform is

(5)
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TABLE I
MSE RESULTS FOR SEVERAL DENOISING METHODS. LEFT: WAVELET (REDUNDANT) TRANSFORMS. MIDDLE: NON WAVELET-BASED DENOISING METHODS.

RIGHT: PROPOSED METHOD WITH RESPECTIVELY THE UDW AND CURVELET BASED DECONVOLUTION STEP

Fig. 1. Left to right: original cropped subregion of the BOATS image, noisy images corrupted with a Gaussian noise (� = 30), obtained denoising result with
UDW (mse = 123:30), and obtained result after our deconvolution procedure initialized with the previous image (mse = 103:17) (cf. Table I).

where denotes the positive part operator, defined as
, is the threshold, and represent respec-

tively the wavelet coefficient before and after the nonnegative
Garrote thresholding rule.

Because the curvelet transform is complex and not norm-pre-
serving (and therefore the variance of the noisy curvelet coef-
ficients will depend on its scale and orientation [5]), we have
used the generalized nonnegative Garrote shrinkage function to
complex values proposed in [18] with the individual variance

computed, in our application (in order to save computa-
tional time) from the norm of each individual curvelet, as pro-
posed by Lexing Ying (and giving similar results compared to
Monte-Carlo simulations [5]) and a scale dependant value for
[5], namely for the first scale and for the others,
with

(6)

where is the modulus of the complex wavelet coefficient
and is the threshold.

C. Comparisons and Discussion

We now present a set of experimental results and compar-
isons illustrating the performance of the proposed deblurring
approach. For the experiments, we have replicated the degra-
dation models used in the evaluation of state-of-the-art methods
described in [1]–[4] for the best existing wavelet-based methods

and [11]–[16] for the best state-of-the-art non-wavelet-based
methods. In these experiments, original images are LENA and
BOATS (of size 512 512) and the variance of the Gaussian
noise vary from 100 to 900. We have summarized the mse results
in Table I. Let us note that the peak signal-to-noise ratio (PSNR)
is sometimes given by some authors and is herein converted in
Table I in mse measures by .
The best mse results provided by the existing denoising algo-
rithm and the results provided by our approach for each degra-
dation level are indicated in bold. For our approach, the first mse
number is the mse result obtained before the deblurring step and
the second (at the right of the arrow) is the mse result after our
deblurring step.

Fig. 1 shows a denoising restorations result on a cropped
(to 200 200) subregion of the BOATS image corrupted with
a AWG noise , before and after our deconvolution
procedure. We can notice that the proposed method is more ef-
ficient for denoising image corrupted with strong AWG noise
(and for which the denoised image is particularly blurred by
the wavelet-based denoising system), especially for the UDW-
based denoising technique for which mse are improved about
15%–20% (compared to the basic denoising procedure) (see
Table I) thus allowing to obtain some competitive denoising re-
sults for the BOATS image. We have included in Fig. 2 a cross-
section of the original BOATS image along with its noisy ver-
sion and the initial wavelet denoised estimate, and finally, the
reconstructed image with the proposed deconvolution scheme in
order to visually see the improvements generated by our deblur-
ring step. We have also combined the two wavelets denoising
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Fig. 2. Cross section of the 208th line (from column 128 to 380) of the original BOATS image (solid line) and the initial UDW denoised estimate x (mse =
123:30 for � = 30) and reconstructed estimate with the proposed deconvolution scheme (mse = 103:17).

TABLE II
MSE RESULTS OBTAINED WITH THE PROPOSED UDW AND CURVELET

DECONVOLUTION PROCEDURE CONSTRAINED RESPECTIVELY BY THE

CURVELET AND UDW SPARSITY CONSTRAINT

methods by constraining the UDW-based deconvolution proce-
dure with the curvelet sparsity constraint and inversely. The ob-
tained mse results are summarized in Table II and indicates that
this strategy allows to improve the mse results about 10%–25%
(compared to the basic denoising procedure).

The proposed deconvolution procedure takes approxima-
tively between three to ten iterations to converge (each iteration
requiring two operations). The deblurring procedure takes
between 15 and 60 s for an AMD Athlon 64 Processor 3500+,
2.2 GHz, 4435.67 bogomips, and running on Linux.

IV. CONCLUSION

In this letter, we have presented a deblurring step for im-
proving the performance of wavelet based image denoising
techniques. The interest of the proposed procedure is herein
illustrated on denoised images reconstructed from the non-
negative Garrote shrinkage on curvelet and UDW coefficients.
The method is simple to implement (considering that a WT
is already available) and allows to improve about 10%–20%
(compared to the basic wavelet-based denoising procedure) the

mse restoration result of image corrupted with strong AWG
noise.
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