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Embedded Polar Quantization

Emmanuel Ravelli, Student Member, IEEE, and Laurent Daudet, Member, IEEE

Abstract—Embedded polar quantization can be useful for
progressive transmission of circularly symmetric data, e.g., for
fine-grain scalable coding of parametric audio. Sets of con-
strained-resolution embedded quantizers are built recursively by
successive refinement processes, that are detailed for strict polar
quantization and unrestricted polar quantization. The quadratic
error minimization problem is solved using equations similar to
those of Max, and the refinement algorithm can, in the unrestricted
case, be simplified using a high-rate approximation. For Gaussian
data, comparisons with reference non-embedded quantizers show
that the embedding property comes at an often negligible cost in
terms of rate-distortion performance.

Index Terms—Embedded quantization, quantizer design, scal-
able audio coding.

I. INTRODUCTION

ONSTRAINED-RESOLUTION embedded quantization
as stated in this letter can be defined as follows. Consider
K quantizers Q%) k =1,... K

o® . RE — {o,...,2F -1} 1)

with L the dimension of the sample space and N*) = 2% the
number of cells for quantizer Q(¥). The output of the quantizer
Q) is a fixed-length k-bits binary code

(k) gk)c(k) (k)
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The quantizers are said to be embedded if there exists fixed-
length binary codes such that

P =D for1 <k < K,and1 <1<k  (3)

In other words, the quantizers are embedded if they produce a
sequence of embedded binary codes: higher rate codes contain
lower rate codes plus bits of refinement.

Embedded quantizers find useful applications in progressive
transmission of information. A well-known example is scalable
image coding (e.g., EZW [1], SPIHT [2]), where wavelet coeffi-
cients are quantized using scalar (L = 1) embedded quantizers.
As the number of received bits increases, the images are pro-
gressively displayed with more and more detail; this property is
commonly used in web browsing. Although not as widespread, a
similar application can be found for scalable audio coding. One
can imagine streaming the same audio content to several users
with different and/or varying bandwidth possibilities. With stan-
dard audio coding, the server has to store a number of bitstreams
corresponding to different compression ratio, and for a given
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user, it must select the one corresponding to its bandwidth using
a conservative approach. In the case of embedded coding, a bit-
stream at maximum resolution is stored; users with less band-
width just need to stop the reception at any time, yet they can
still receive the file with the best quality given their bandwidth.

Recent work [3] focused on applying the SPIHT algorithm to
MDCT-based audio coding. Transform coding gives excellent
results at high rates, but at low rates, the quality decreases
significantly, and thus, parametric coding performs better.
While MDCT-based coding uses real coefficients and thus
scalar quantization, some parametric representations (e.g., [4])
produce complex coefficients. Each complex coefficient is
efficiently represented in polar form: its norm and angle are
the amplitude and the phase. Another application is image
coding using complex wavelet transforms [5]. These kinds of
representations imply the need for an efficient polar quantizer
that has also the embedding property. This letter addresses this
problem.

Embedded quantization was first introduced for scalar quan-
tization in [6]. An optimal quantizer is chosen first as a refer-
ence; it is designed using the standard numerical optimization
methods of Max [7]. The quantizers of lower and higher rates
are designed by iteratively aligning the quantization thresholds
and optimizing the thresholds and reconstruction points using
methods similar to [7]. Such quantizers can be easily repre-
sented using binary trees. Each stage of the tree corresponds to
a particular rate, the nodes correspond to the boundary points,
and the branches correspond to the output levels. Practical em-
bedded scalar quantizers have also been proposed in [8]-[10].
Finally, embedded quantization has been generalized to vector
quantization. An example of such vector quantizers are the tree-
structured vector quantizers (TSVQ) [11]. The 2-ary TSVQ is
designed using a binary tree and numerical solving mehods sim-
ilar to [7]; the embedded quantizers are then the pruned tree cor-
responding to the first k stages of the TSVQ.

This letter considers a particular case of two-dimensional
(L = 2) quantizers that enable embedded polar quantization.
Polar quantizers are natural quantizers for two-dimensional
data with circularly symmetric densities. Amplitude and phase
can be quantized separately, in this case is called strict polar
quantization (SPQ [12]), or they can be quantized jointly, called
unrestricted polar quantization (UPQ [13]). In this letter, a cir-
cularly symmetric complex variable x is used, represented by
its polar coordinates (r, ). Since amplitude and phase variables
are independent, the variable joint density function is then

Fx(r,6) = o fl0) @)

where fr(r) is the marginal density function of the am-
plitude variable. A polar quantizer Q) with N(*) cells is
defined as follows. The amplitude range is partitioned into
M®) Jevels and, within each amplitude level, indexed by
m = 1,2,.... M®); there are P{¥) equal-sized phase cells,
such that Z?rf:l) P = N®). Note that for SPQ, one has
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Pyqu) = P®) for all m. The boundaries of the amplitude levels
are

R =0<RM <R <. <Rl = 5)
and the boundaries of the phase regions for the amplitude level

m are

2 2 2
ki i (k) _ 122
0< ®) <2 ,(nk) < (PyY —1) @ <2m.  (6)

The output point for the cell R( ) » defined by the amplitude level

m and the phase region p is (am B, (k) »). The mean-square error
is then expressed by

M (k) p(k)

(k)_ZZ//(U

m=1 p=1

rel? — QIEL fX(T7 0)drded.
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The purpose of this letter is to detail simple construction rules

for embedded quantizers, in the cases of SPQ (see Section II)

and UPQ (see Section III), and to compare the performance

of the embedded quantizers to the performance of the non-em-
bedded quantizers for Gaussian data.

II. EMBEDDED STRICT POLAR QUANTIZATION

A. Quantizers Design

SPQ is first considered. As amplitude and phase are quan-
tized separately, scalar embedded quantization techniques can
easily be used to design the embedded SPQ. An algorithm sim-
ilar to [6] is used, where an optimal reference quantizer is first
selected. Then, successive lower- and higher-rate quantizers are
built in a recursive manner. The design algorithm consists of the
following three steps:

1) Reference quantizer: An optimal SPQ Q(*<s) is designed
using the algorithm of [12]. Q(¥~<#) has a number of amplitude
levels M (r<s) and a number of phase levels P(res).

2) Lower-rate quantizers: Two lower-rate quantizers Q)

are designed from Q(**+1) The first one is designed from
Q(++1) by selecting only every second amplitude boundary
and keeping the same number of phase levels. The other one is
designed from Q(**+1) by selecting only every second phase
boundary and keeping the same number of amplitude levels.
The output points for the two quantizers are found using

R(F)
m o rfr(r)dr
o) —S(P(k))_f’;“(m)41 felr) 8)
m = =D
fm fr(r)dr
k 1 27r
/5'7(n)p = <P —3) pw )

with S (P®)) = sinc (x/P*)). Then, the distortion is
computed for each quantizer using (7), and the one with the
minimum distortion is selected.

3) Higher-rate quantizers: Similarly, two higher-rate quantizers
Q™) are designed from Q(*~1). The first one is designed
from Q*~1 by refining the amplitude quantizer by two and
keeping the same number of phase levels. The new amplitude
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Fig. 1. (Top) Rate-distortion curve for the optimal SPQ of [12]. (Bottom) Ex-
cess distortion over the optimal SPQ for several embedded SPQs using different
values for k... s.

boundaries are initialized at the middle of the previous
amplitude boundaries. Boundaries and output points are then
computed iteratively by first updating the output points using
(8) and (9) and next by updating the new amplitude boundaries
using

1 (k) + afjil
S(P®) 2

R = (10)

Another higher-rate quantizer can be designed from Q(*—1)
by refining the phase quantizer by two and keeping the same
number of amplitude levels. The new phase boundaries are

at the middle of the previous boundaries, and the new output
points are calculated using (8) and (9). Again, the distortion is
computed for each quantizer using (7), and the one with the
minimum distortion is selected.

B. Application: Gaussian Data

The performance of our quantizers is evaluated using an
independent bivariate Gaussian source. Such a source gives a
good base of comparison as the results for existing quantizers
are well known [12], [13]. Moreover, the source produced by
the DFT of a stationary signal of length N tends to a bivariate
Gaussian source as N becomes large. A bivariate Gaussian
source is equivalent to an independent circularly symmetric
complex variable whose amplitude has a Rayleigh distribution.
The joint density function is then fx (r,6) = (1/27) fr(r) with
fr(r) = (r/o?)exp (—r?/20?). Several embedded SPQs are
compared using different values for k,..; and these embedded
SPQs are also compared with the (non-embedded) optimal SPQ
(from [12]).

Fig. 1 shows the results obtained for k,.r = 1,6,8, 12 bits.
When the actual number of bits is not far from £,.. ¢, the excess
distortion of the embedded quantizers is low, typically less than
0.2 dB. The choice of k... will depend on the application: a low
ke is selected if the probability of having low rates is high; and
a high k. is selected if the probability of having low rates is
low. Note that in cases where little is known a priori about such
probability, a conservative approach should favor a large k..
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Fig.2. Cell delimited by the amplitude boundaries R and R+ 6 R and the phase
boundaries difference 27/ P. The dashed line represents the new cells boundary
for phase refinement, and the dash-dotted line represents the new cells boundary
for amplitude refinement.
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Fig. 3. (Top) Rate-distortion curves for the optimal UPQ of [13], the optimal
high-rate UPQ of [14], and our embedded UPQ (without the high-rate approx-
imation for the refinement choice). (Bottom) Excess distortion over the em-
bedded UPQ for the embedded UPQ with the high-rate approximation for the
refinement choice.

III. EMBEDDED UNRESTRICTED POLAR QUANTIZATION

A. Quantizers Design

Consider the more general case of unrestricted polar quan-
tization (UPQ). Here, lower-rate embedded quantizers cannot
necessarily be found using an optimal reference quantizer, and
consequently, the same design method as in SPQ cannot be used.
Indeed, an optimal UPQ as designed in [13] does not necessarily
have a power-of-two number of phase regions at a given ampli-
tude level. Instead, an algorithm similar to 2-ary TSVQ is used.
The design algorithm consists of the following two steps:

1) Reference quantizer: The first quantizer Q(V) is the optimal
2-cell quantizer (top-left of Fig. 4).

2) Higher-rate quantizers: For a higher-rate quantizer Q(*)
with k = 2,..., K, each region of Q*~1) is refined separately
in two different ways, by refining either the amplitude or the
phase. This leads to 92" possibilities for O®) However, as
the source is supposed to be circularly symmetric, cells at the
same amplitude level Perform in the same way. Consequently,
there are only 2M" ™" possibilities for Q(*). For a cell at a
given amplitude level, one has to decide whether an amplitude
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Fig. 4. First six embedded UPQs for Gaussian data.

refinement or a phase refinement gives the smallest distortion;
this choice is discussed in the next subsection. Then, the new
boundaries and output points are computed using equations
similar to those of Max [7]. The same process is repeated for
each amplitude level.

B. Choice Between Amplitude and Phase Refinement

Consider a cell delimited by the amplitude boundaries R and
R+ R and the phase boundaries difference 27/ P (see Fig. 2).
Depending on these three parameters, it may be better to choose
either an amplitude refinement (the new devided cell is noted
(a)) or a phase refinement (the new divided cell is noted (b)).
For amplitude refinement, the amplitude boundary R + ~ and
the two new output points «; and ay are calculated iteratively
using the following equations:

R+7= ﬁw (11)
Rt~y
oy :S(P)W (12)
Jr " fr(r)dr
R+6R
d
0 = S(P) R rfr(r)dr 13

R+oR :
Ri~ fr(r)dr
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For the phase refinement, the phase boundary is at the middle
of the cell, and the new output point « is calculated using

féﬂéR rfr(r)dr

ST fr(rydr

The distortions D, and Dy, are computed using (7), and the one
that gives the smallest distortion is selected.

An analytical solution for the refinement choice can be de-
rived using high-rate approximation. The joint probability den-
sity function is supposed to be constant in the cell. Moreover,
P is supposed to be large, and S(P) is approximated using its
second-order Taylor expansion. The total distortion D, for the
cell (a) is

P (R+6R—)®— (R+%E — )’

a = 5(2P) (14)

D,. =
fr(R) 3
72 SR\ ? o)
— | (R+6R* - (R+—) | =
+3pz | (BHOR) <+2> 2
3
N (R+22 —a1)” — (R—)?
3
7T2 OR 2 2 aq
with
72 OR
v OR
The total distortion Dy, for the cell (b) is
D P  (R+6R-a)’—(R-a)
" fr(R) 3
2
T 2 _ ¢
+3(2p)2((R—|—6R) R )2
with

w2 OR
=(l1-—=< )| R+—)- 15
o= (1= garp) (1+7) )
To find the boundaries, D, < D is solved. Using a first-
order approximation of the former expressions, this inequality

is equivalent to
P S R L 1
2r — \6R 2/

Equation (16) has a simple interpretation: if the length 6 i of the
radial boundary of the cell is bigger than (R + 6R/2)(27/P),
which is the length of the average circle arc, then amplitude re-
finement is preferred, and vice-versa. In the next subsection, this
analytical solution appears to be a good approximation, even at
low rates. It saves computational cost since only boundaries and
output points need to be calculated.

(16)

C. Application: Gaussian Data

The performance of our quantizer is evaluated using the same
independent bivariate Gaussian source as in Section II-B. The
following quantizers are compared: the optimal UPQ [13], the
high-rate optimal UPQ [14], and our embedded UPQ (without
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the high-rate approximation for the refinement choice). For the
optimal UPQ), the simulation has been performed up to a rate of
6 bits only, since for higher rates, the computational cost is too
high.

To evaluate the excess distortion due to the high-rate approx-
imation for the refinement choice, the excess distortion over
the embedded UPQ is plotted for the embedded UPQ with the
high-rate approximation for the refinement choice (see Fig. 3).
The excess distortion for the embedding property here is always
less than 1 dB over optimal non-embedded, a price to pay that
can, in certain applications, be considered small with regard
to its benefits. Finally, the first six embedded UPQ are shown
in Fig. 4, using the high-rate approximation for the refinement
choice.

IV. CONCLUSION

This letter describes simple algorithms to design polar quan-
tizers that can be embedded. Two kinds of quantizers have been
distinguished: embedded strict polar quantizers where ampli-
tude and phase are quantized separately and embedded unre-
stricted polar quantizers where amplitude and phase are quan-
tized jointly. For bivariate Gaussian data, this results in a small
increase of distortion over when compared to the standard op-
timal polar quantizers (typically less than 0.2 dB for SPQ, less
than 1 dB for UPQ). A high-rate approximation for the refine-
ment choice has been introduced and results in negligible excess
distortion. This tool is a first step toward efficient bit-plane en-
coding of polar data, which have applications such as fine-grain
scalable parametric audio coding.

REFERENCES

[1] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Process., vol. 41, no. 12, pp.
3445-3462, Dec. 1993.

[2] A. Said and W. A. Pearlman, “A new fast and efficient image codec

based on set partitioning in hierarchical trees,” IEEE Trans. Circuits

Syst. Video Technol., vol. 6, no. 3, pp. 243-250, Jun. 1996.

M. Raad, A. Mertins, and I. Burnett, “Scalable to lossless audio

compression based on perceptual set partitioning in hierarchical

trees (PSPIHT),” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal

Processing, May 2003, vol. 5, pp. 624-627.

[4] R. Vafin and W. B. Kleijn, “Entropy-constrained polar quantization and
its application to audio coding,” IEEE Trans. Speech Audio Process.,
vol. 13, no. 2, pp. 220-232, Mar. 2005.

[5] N. G. Kingsbury and T. H. Reeves, “Iterative image coding with over-
complete complex wavelet transforms,” in Proc. Conf. Visual Commu-
nication and Image Processing, Jul. 2003, pp. 1253-1264.

[6] K.-H. Tzou, “Embedded Max quantization,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing, Apr. 1986, vol. 11, pp. 505-508.

[7] J. Max, “Quantizing for minimum distortion,” IRE Trans. Inf. Theory,
vol. IT-6, no. 1, pp. 7-12, Mar. 1960.

[8] J. L. Kim, K. Lee, and T. Kim, “Adaptive reconstruction for embedded
quantisation,” Electron. Lett., vol. 38, no. 18, pp. 1065-1067, Aug.
2002.

[9] H. Brunk and N. Farvardin, “Fixed-rate successively refinable scalar
quantizers,” in Proc. IEEE Data Compression Conf., 1996, pp.
250-259.

[10] H. Brunk and N. Farvardin, “Embedded trellis coded quantization,” in
Proc. IEEE Data Compression Conf., 1998, pp. 93-102.

[11] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Norwell, MA: Kluwer, 1991.

[12] W. A. Pearlman, “Polar quantization of a complex Gaussian random
variable,” IEEE Trans. Commun., vol. COMM-27, pp. 892-899, Jun.
1979.

[13] S.G. Wilson, “Magnitude/phase quantization of independent Gaussian
variates,” IEEE Trans. Commun., vol. COMM-28, pp. 1924-1929,
Nov. 1980.

[14] P.F. Swaszek and T. W. Ku, “Asymptotic performance of unrestricted
polar quantizers,” IEEE Trans. Inf. Theory, vol. 32, no. 2, pp. 330-333,
Mar. 1986.

3

—



