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New Adaptive Algorithm for Delay
Estimation of Sinusoidal Signals

Mrityunjoy Chakraborty, Senior Member, IEEE, H. C. So, Senior Member, IEEE, and Jun Zheng

Abstract—In this letter, we address the problem of adaptively es-
timating the time delay of a noisy sinusoid received at two spatially
separated sensors. By choosing the sampling frequency equal to
four times the signal frequency, a simple adaptive algorithm for
direct delay estimation is derived. Algorithm convergence in mean
and mean square error is proved. Computer simulations are also
included to demonstrate the effectiveness of the proposed method.

Index Terms—Adaptive filters, sinusoidal signals, time delay
estimation.

I. INTRODUCTION

ACCURATE time delay estimation between two or more
noisy versions of the same signal received at spatially sep-

arated sensors [1] is an important topic that finds applications
in positioning and tracking, speed sensing, direction finding,
biomedicine, exploration geophysics, etc. Over the years, many
methods have been proposed to tackle this problem effectively.
For stationary time delay, the generalized cross correlator [2]
is a classical estimator where the delay estimate is found by
locating the peak of the cross correlation function of the filtered
versions of the observed data. Under Gaussian signal and noise
assumption, it can provide maximum likelihood estimation
performance. On the other hand, for sinusoidal signals which
commonly occur in radar, sonar, and digital communications,
the quadrature delay estimator (QDE) utilizing all in-phase and
quadrature-phase components of the received signals, as well as
the discrete-time Fourier transform-based method [3], provide
viable solutions to the delay estimation problem.

When the time delay is time-varying due to relative source/re-
ceiver motion, adaptive tracking of it is necessary. In [4], a finite
impulse response (FIR) filter is used to model the time delay and
its estimate is computed from interpolating filter coefficients. Al-
ternatively, explicit delay adjustment [5]–[8] can be achieved by
constraining thefiltercoefficients tobesomefunctionsof the time
delay. A notable recentdevelopment in this respect is the adaptive
QDE [8] which can be viewed as an online realization of [3].

In this letter, we present a novel adaptive filter algorithm
for estimating the delay in a sinusoidal signal received at two
sensors. The development is based on an appropriate sampling
rate which generates a two-tap FIR filter model for the delayed
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signal and also results in a diagonal autocorrelation matrix for
the 2 1 filter input vector. The delay is estimated and tracked
by identifying the filter coefficients which are given as sinu-
soidal functions of the delay. For this, a novel adaptive algo-
rithm is developed that updates the delay estimate explicitly.
The delay update is shown to converge to the true delay value
in mean, for which necessary convergence condition is estab-
lished. A detailed stability analysis is also carried out where con-
ditions for keeping the steady-state delay estimation error vari-
ance bounded are worked out. The proposed algorithm is com-
putationally simpler than the standard least mean square (LMS)
algorithm [9] as well as other existing delay estimation algo-
rithms and, in particular, offers an elegant implementation using
CORDIC processors [10], [11]. MATLAB-based simulation re-
sults also suggest that the estimation and tracking performance
of the proposed algorithm is at par with both the standard LMS
algorithm [9] and the adaptive QDE [8].

II. ADAPTIVE DELAY ESTIMATION

A. Proposed Algorithm

Consider the following model for the signals received at the
two sensors, namely, and :

(1)

(2)

where is a sinusoid with known analog
frequency and random phase that is uniformly distributed
over . The two terms and represent two zero
mean, additive white Gaussian noise processes independent of
each other and also of and thus of . The variable is the
delay between the received copies of the signal at the two
sensors, which is unknown and is to be estimated and tracked.
It is also assumed that the net phase shift due to the delay
lies within which eliminates possibilities of ambiguity
over .

The signals and are digitized with a sampling pe-
riod to generate the sequences

and

, where ,
, and . Our key idea is to select

a specific sampling period satisfying , or equiva-
lently, , where is the sampling frequency.
It is then possible to write as

(3)

To estimate and track the delay, one can approach (3) as a system
identification problem with noisy input and use a standard LMS-
based two-tap adaptive filter with coefficients, say, and
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. This method, however, would require additional compu-
tations in the form of to obtain the delay
estimate at each index. Further, in the absence of a constraint like

, this also may not produce sufficiently ac-
curate delay estimates, especially under rapidly fluctuating delay
condition, or for very short data records. In this context, a simpler
and also more appropriate approach, in our opinion, would be to
use the a priori knowledge of the specific forms of the system
coefficients, viz., and and precondition the
adaptive filter as , with

denoting transposition. The filter weights are then adjusted
by directly updating the delay estimate in an LMS like
manner, as given by

(4)

The constant in (4) is the step size parameter and the
error signal is given as ,
with . It is easy to verify that

.
This results in the following delay update equation:

(5)

Note that the two operations, namely, filtering as given by
and delay updating as given by (5), require gen-

eration of signal pairs of the following form : , ,
where is either or and at index .
Such signal pairs can be generated very efficiently by CORDIC
processors [10] by means of a sequence of additions and wired
shift operations. This would reduce the number of multiplica-
tions and divisions from five as in the LMS algorithm to just
two. Furthermore, no additional overhead will be required to
evaluate trigonometric quantities.

In the following, we show that the delay update (5) converges
in mean, i.e., , where denotes
the expectation operator, provided that is chosen to satisfy

.

B. Convergence Analysis

First recall that the phase is uniformly distributed over
, meaning the signal autocorrelation is given as

where is any integer. From this and also from the fact that
is a zero mean, white process independent of , it then

follows that the 2 2 input autocorrelation matrix is given as
, where

and denotes the 2 2 identity matrix. Next, define the instan-
taneous delay error as . Then, using the def-
inition , from (5), we
can write

(6)

Note that the two vectors, and , are mutually orthog-
onal at each index , i.e., . We now invoke
the “independence assumption” as is common with the analysis
of the LMS algorithm [9] and assume to be statistically in-
dependent both of , or, equivalently, of and thus of

, and of . Together,
this means is statistically independent of . Replacing

in (6) by , using the orthogonality be-
tween and and the fact that ,
we then first observe

(7)

In (6), on the RHS, we then have only to evaluate
. For this, we first replace

by . Next, we observe
that since depends only on the past samples of

and is a zero mean, white Gaussian process
(i.e., samples of are i.i.d.) independent of ,

. Thus

(8)

since and are mutually independent, zero mean
processes and . When is suffi-
ciently close to , is small and we can approximate

by . Combining (6)–(8), we then have
(9)

Clearly, if .
Since converges to in mean, it is essential to en-

sure that the steady-state value of remains
bounded. It is shown in the Appendix that this requires to
satisfy for which

(10)

with .

III. SIMULATION RESULTS

Computer simulations were carried out to evaluate the delay
estimation performance of the proposed method vis-a-vis the
adaptive QDE [8] and the LMS algorithm [9]. For this, a unity
amplitude sinusoidal signal of frequency
was used which was sampled with a sampling period of

. The powers of the two noise processes
and were assigned the same value that results in the same
signal-to-noise ratio (SNR) of 10 dB for both the received sig-
nals and . For the adaptive QDE, a fifth-order La-
grange fractional delay filter was used together with filter coeffi-
cient modulation because of the relatively low sampling rate. In
the case of the LMS algorithm, a two-tap filter was employed
and the corresponding delay estimate was obtained by com-
puting arc tangent on the ratio of the filter coefficients. The re-
sults provided are based on averages of 2000 independent runs.
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Fig. 1. Mean delay estimates for a step change in D.

Fig. 2. Mean square delay estimation errors for a step change inD.

Fig. 1 shows the trajectories for the mean delay estimates (i.e.,
) of the three methods for a step change in which was

held constant at 1.5 during the first 2000 iterations and
changed instantaneously to 3.75 afterwards. The step
size parameters for the proposed estimator, the adaptive QDE,
and the LMS algorithm were chosen as 2.5 , 0.013, and
0.007, respectively, which ensures the same convergence speed
for all the three schemes. It is seen from Fig. 1 that in the mean
sense, all three methods accurately estimate and track the piece-
wise constant time delay. It is also easily seen that the simulated
plot for for the proposed method conforms very well
to the dynamics described by (9). Next, we measured the corre-
sponding mean square delay estimation errors and the results are
plotted in Fig. 2. It is seen that while the mean square errors of the
proposed scheme and the LMS algorithm are comparable, that of
the adaptive QDE is lesser when and higher
when , implying that the estimation error
variance of the latter is delay dependent. Finally, we have also
measured the steady-state values of at
and andfound themtobe5.60 and
5.61 , respectively, which also conforms closely to
the theoretical value given by (10), namely, 5.04 .

IV. CONCLUSION

A new adaptive algorithm for direct estimation of the time
delay between two noisy versions of a sinusoidal signal received
at spatially separated sensors has been developed. The algorithm
uses a specific sampling frequency that results in a two-tap FIR
filter model for the delay process which is identified by updating
the delay estimate directly. Trajectories for the mean delay es-
timate and mean square delay error are also derived. MATLAB
simulations showed comparable estimation performance of the
proposed method, both in mean and mean square, with the stan-
dard LMS algorithm and the adaptive QDE. The proposed al-
gorithm is computationally simpler than both the LMS and the
adaptive QDE schemes, though the latter can operate at any sam-
pling frequency at the expense of some additional computations
like Hilbert transformation.

APPENDIX

CONVERGENCE OF DELAY ERROR VARIANCE

First observe from (5) that

(A1)

Using the independence between and , combining (7)
and (8), and once again using the approximation

, we can write

(A2)

To evaluate the third term on the RHS of (A1), we observe that
and . Defining

, we can then write

where . Similarly, defining

and thus

(A3)

We can then write

(A4)
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Note that in (A4), the cross terms involving take zero value
since is a zero mean, white Gaussian process independent
of and , and also of as explained in Section II-B.
The remaining terms in (A4) are evaluated separately each as
follows.

A) : Since is independent of ,
, and , . To

evaluate , we note that 1)
, since is uniformly dis-

tributed over and is independent
of because of the “independence assumption”;
2) ,
since is a zero mean vector independent of and

; and, lastly, 3)
Thus,

. Neglecting the
fourth-order term which is very small for high
SNRs, we have .

B) : Substituting
, and once again using the fact that

is a zero mean vector independent of and , we

observe that 1)

, and 2) any cross term involving first power of
results in zero after the expec-

tation operation w.r.t. . The third term, ,

on simplification, results in

Since is a zero mean white Gaussian process, we
have and . From this and
using the independence of with , we observe
that consists only of terms involving ,
which is again negligibly small for high SNR conditions.
Thus, .

C) :
Substituting ,
we observe that this has three terms, namely, 1) a cross
term involving first power of which becomes zero
after expectation since is zero mean and is

independent of and , 2)

, and 3)

, where we use the approximation
for small values of . Combining

D)
: Again substituting

, we observe that this has the following three terms:
1) A cross term involving first power of but free
of which is zero for reasons explained above,

2)

(since and are mutually orthogonal), and

3)

(since is independent of and ). Thus,
.

Combining the results of (A2) and
in (A1), we then obtain

(A5)

where and
. Equation (A5) is a first-order recursion with

initial condition . It is easy to verify that it
has the solution

(A6)

To ensure that , we must choose
, which, after some calculations, results in the condition:

. The steady-state value of is then
given by , which, after substitution of the values of

and and some simplification, yields (10).
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