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Interference-Normalised Least Mean Square
Algorithm
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Abstract—An interference-normalised least mean square
(INLMS) algorithm for robust adaptive filtering is proposed .
The INLMS algorithm extends the gradient-adaptive learning
rate approach to the case where the signals are non-stationary.
In particular, we show that the INLMS algorithm can work even
for highly non-stationary interference signals, where previous
gradient-adaptive learning rate algorithms fail.

Index Terms—NLMS, gradient-adaptive learning rate, adap-
tive filtering

EDICS Category: SAS-ADAP

I. I NTRODUCTION

The choice of learning rate is one of the most important
aspects of least mean square adaptive filtering algorithms
as it controls the trade off between convergence speed and
divergence in presence of interference.

In this paper, we introduce a new interference-normalised
least mean square (INLMS) algorithm. In the same way as
the NLMS algorithm introduces normalisation against the
filter input x (n), our proposed INLMS algorithm extends the
normalisation to the interference signalv (n). The approach is
based on the gradient-adaptive learning rate class of algorithms
[1], [2], [3], [4], but improves upon these algorithms by being
robust to non-stationary signals.

We consider the adaptive filter illustrated in Fig. 1, where
the input signalx (n) is convolved by an unknownh (n) filter
(to producey (n)) which has an additive interference signal
signal v (n), before being observed asd (n). The adaptive
filter attempts to estimate the impulse responseĥ (n) to be
as close as possible to the real impulse responseh (n) based
only on the observable signalsx (n) andd (n). The estimated
convolved signalŷ (n) is subtracted fromd (n), giving an
output signale (n) containing both the interferencev (n) and
a residual signalr (n) = y (n) − ŷ (n). In many scenarios,
such as echo cancellation, the interferencev (n) is actually
the signal of interest in the system.

The standard normalised least mean squares (NLMS) algo-
rithm is given by:

e (n) = d (n)− ĥ
H (n−1)x (n) (1)

ĥ (n) = ĥ (n−1) +
µ (n)

‖x (n)‖
2 e

∗ (n)x (n) (2)
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Figure 1. Block diagram of echo cancellation system.

where x (n) = [x (n) , x (n− 1) , . . . , x (n− L+ 1)]
T and

µ (n) is the learning rate. Here, we propose to extend this
algorithm, by adaptively updatingµ (n). By adopting our
approach, we develop an algorithm which we call the INLMS
algorithm and which works even for highly non-stationary
interference signals, where previous gradient-adaptive learning
rate algorithms fail.

Section II introduces existing gradient-adaptive learning
rate algorithms and their limitations. Section III describes
our proposed INLMS algorithm, followed by the results and
discussion in Section IV. Section V concludes this paper.

II. GRADIENT-ADAPTIVE LEARNING RATE

Gradient-adaptive learning rate algorithms are based on the
fact that when the adaptation rate is too small, the gradient
tends to keep pointing in the same direction, while if it is
too large, the gradient oscillates. Based on the behaviour of
the stochastic gradient, it is thus possible to infer whether
the learning rate must be increased or decreased, and several
methods have been proposed in the past to adjust the learning
based on the gradient.

These methods each have acontrol parameter that is
used to determine the learning rate. In the case of [1], [2],
[3], the control parameter is the learning rate itself. In the
generalized normalized gradient descent (GNGD) algorithm
[4] the (normalised) learning rate is:

µ (n) =
µ0 ‖x (n)‖2

‖x (n)‖
2
+ ǫ (n)

(3)

where ǫ (n) is the control parameter. Because the control
parameter is adapted based on the NLMS stochastic gradi-
ent behaviour, it can only vary relatively slowly (typically
requiring tens or hundreds of samples). For that reason, it is
important for the optimal learning rate not to depend on rapid
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changes of the control parameter. We will show in the next
section that none of the methods cited above can fulfil this
condition for non-stationary sources.

A. Analysis For Non-Stationary Signals

Under the assumption thatx (n) and v (n) are zero-mean
and uncorrelated to each other and thatv (n) is i.i.d., the
theoretical optimal learning rate is equal to the residual-to-
error ratio [5]:

µopt (n) =
E
{
r2 (n)

}

E {e2 (n)}
(4)

wherer (n) = y (n) − ŷ (n) is the (unknown) residual echo
and e (n) is the error signal. It turns out that although the
assumption onv (n) is not verified for speech, (4) nonetheless
remains a good approximation. Earlier gradient-adaptive algo-
rithms varyµ (n) directly as a response to the behaviour of
the gradient (µ (n) is the control parameter). It is a sensible
thing to do if one assumes thatv (n) andx (n) are stationary
signals, because it means that bothE

{
r2 (n)

}
andE

{
e2 (n)

}

vary slowly and, as a consequence, so doesµopt (n). On the
other hand, if the statistics of eitherv (n) or x (n) changes
abruptly, then the algorithm is not capable of changingµ (n)
fast enough to prevent the adaptive filter from diverging.

The GNGD algorithm provides more robustness to non-
stationarity. If we examineǫ (n) more closely, it is reasonable
to surmise that (3) eventually converges to the optimal learning
rate defined by (4). Assuming steady state behaviour (ǫ (n) is
stable) andµ0 = 1, we find (by multiplying the left hand side
numerator and denominator byγ (n)) that:

E
{
r2 (n)

}

E {r2 (n)}+ γ (n) ǫ (n)
=

E
{
r2 (n)

}

E {e2 (n)}
(5)

where γ (n) = E
{
r2 (n)

}
/ ‖x (n)‖2 is analogous to the

filter misalignment. Assuming thatr (n) and v (n) are zero-
mean and uncorrelated to each other, we haveE

{
e2 (n)

}
=

E
{
r2 (n)

}
+E

{
v2 (n)

}
, which results in the relationǫ (n) =

E
{
v2 (n)

}
/γ (n). In other words, the optimal value for

the gradient-adaptive parameterǫ (n) depends on the filter
misalignment and on the variance of the interference signal,
but is independent of the variance of the input signal. Because
ǫ (n) can only be adapted slowly over time, there is an
implicit assumption in (3) thatE

{
v2 (n)

}
also varies slowly.

While this is a reasonable assumption in some applications,it
does not hold for scenarios like echo cancellation, where the
interference is speech (double-talk) that can start or stopat
any time.

III. PROPOSEDALGORITHM FOR NON-STATIONARY

SIGNALS

In previous work [5], we proposed to use (4) directly
to adapt the learning rate. WhileE

{
e2 (n)

}
can easily be

estimated, the estimation of the residual echoE
{
r2 (n)

}
is

difficult because one does not have access to the real filter
coefficients. One reasonable assumption we can make is that:

E
{
r2 (n)

}
= η (n)E

{
y2 (n)

}

≈ η (n−1)E
{
ŷ2 (n)

}
(6)

whereη (n) is a form of normalised filter misalignment, and
is easier to estimate thanE

{
r2 (n)

}
directly, because it is

assumed to vary slowly as a function of time. Although it is
possible to estimateη (n) directly through linear regression,
the estimation remains a difficult problem.

In this paper we propose to apply a gradient adaptive
approach usingη (n) as the control parameter. By substituting
(6) into (4), we obtain the learning rate:

µ (n) = min


η (n−1)

σ̂2
ŷ (n)

σ̂2
e (n)

, 1


 (7)

where σ̂2
ŷ (n) and σ̂2

e (n) are respectively the estimates for
E
{
ŷ2 (n)

}
andE

{
e2 (n)

}
and the upper bound imposed by

themin (·) reflects the fact that the optimal learning rate can
never exceed unity.

A. Adaptation

In this paper we bypass the difficulty of estimatingη(n)
directly and instead propose a closed-loop gradient adaptive
estimation ofη(n). The parameterη(n) is no longer an esti-
mate of the normalised misalignment, but is instead adapted
in closed-loop in such a way as to achieve a fast convergence
of the adaptive filter.

As with other gradient-adaptive methods we update the
control parameterη(n) by computing the derivative of the
squared errorE (n) = 1

2e
∗ (n) e (n), this time with respect

to η (n− 1), using the chain derivation rule without the
independence assumption [1], [6]:

∂E (n)

∂η (n−1)
=

1

2

(
∂e∗ (n)

∂η (n−1)
e (n) + e∗ (n)

∂e (n)

∂η (n−1)

)

= −ℜ

{
e (n)xH (n)ψ (n− 1)

‖x (n)‖2

}
σ̂2
ŷ (n)

σ̂2
e (n)

(8)

where

ψ (n) =

[
I−

µ (n)x (n)xH (n)

‖x (n)‖
2

]
ψ (n−1) + x (n) e∗ (n)

(9)
is a smoothed version of the gradient. We further rewrite the
update ofψ (n) in (9) as

ψ (n) =ψ (n−1)−
µ (n)

‖x (n)‖
2x (n)

[
x
H (n)ψ (n−1)

]

+ x (n) e∗ (n) (10)

so that it does not require a matrix-by-vector multiplication.
Based on this derivative, we propose the following expo-

nential update ofη (n). We propose to use an exponential
update in place of a more standard additive update since the
misalignment has a large dynamic range; and we want the step
size to scale with the value ofη (n). The exponential update
is given as follows:

η (n) = η (n− 1) exp

(
ρ

σ̂2
e (n)

∂E (n)

∂η (n−1)

)
(11)
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ŷ (n) = = ĥ (n−1)x (n)
e (n) = d (n)− ŷ (n)

σ̂2
ŷ (n) = min

(
Ê3

{
|ŷ (n)|

2
}
, Ê10

{
|ŷ (n)|

2
})

σ̂2
e (n) = max

(
Ê1

{
|e (n)|

2
}
, Ê3

{
|e (n)|

2
}
, Ê10

{
|e (n)|

2
})

µ (n) = min

(
ν (n−1)

̂σ2

ŷ
(n)

σ̂2
e(n)

, 1

)

ĥ (n) = ĥ (n−1) + µ(n)

‖x(n)‖2 e∗ (n)x (n)

η (n) = η (n−1) exp

[
ρ̂σ2

ŷ
(n)ℜ{e(n)xH(n)ψ(n−1)}
σ̂2
e(n)‖x(n)‖

2σ̂2
e(n)

]

ψ (n) = ψ (n−1)− µ(n)

‖x(n)‖2x (n)
[
x
H (n)ψ (n−1)

]

+e∗ (n)x (n)

Figure 2. Summary of the INLMS algorithm

whereρ is a step size and we have normalised the gradient
∂E(n)

∂η(n−1) by σ̂2
e (n) to obtain a non-dimensional value.

It remains to estimatêσ2
ŷ (n) and σ̂2

e (n). For σ̂2
e (n) we

have the following recursive estimator with time constantN

(σ̂2
ŷ (n) is estimated similarly):

ÊN

{
|e (n)|

2
}
=

(
1−

1

N

)
ÊN

{
|e (n− 1)|

2
}
+

1

N
|e (n)|

2

(12)
The question then becomes what value ofN to use. To
maximise stability, a conservative approach is to err on the
side of picking the smallest̂σ2

ŷ (n) and the biggest̂σ2
e (n) out

of the set of estimated obtained by varyingN . For efficiency,
we have chosen a subset of all possibleN values. The values
N = 3 and N = 10 provide good short- to medium-term
term estimation, though the algorithm is not very sensitiveto
the exact choice ofN . For the estimation of̂σ2

e (n), we also
includeN = 1 to make sure that even an instantaneous onset
of interference cannot cause the filter to diverge. The complete
algorithm is summarised in Fig. 2.

The last aspect that needs to be addressed is the initial
condition. When the filter is initialised, all the weights are
set to zero (̂h (0) = 0), which means that̂y (n) = 0 and no
adaptation can take place in (7) and (8). In order to bootstrap
the adaptation process, the learning rateµ (n) is set to a fixed
constant (we useµ = 0.25) for a short time (until (7) gives
µ (n) > 0.1). This ad hoc procedure is only necessary when
the filter is initialised and is not required in case of echo path
change. In practice, any method that provides a small initial
convergence can be used.

B. Analysis

The adaptive learning rate described above is able to deal
with both double-talk and echo path change without explicit
modelling. From (7), we can see that when the interference
changes abruptly, the denominator̂σ2

e (n) rapidly increases,
causing an instantaneous decrease in the learning rate. In the
case of a stationary interference, the learning rate depends on
both the presence of an input signal and on the misalignment
estimate. As the filter misalignment becomes smaller, the

learning rate also becomes smaller. When the echo path
changes, the gradient starts pointing steadily in the same
direction, thus significantly increasingη(n), which is a clear
sign that the filter is no longer properly adapted.

In gradient adaptive methods [1], [2], [3], the implicit
assumption is that both the near-end and the far-end signalsare
nearly stationary. We have shown that the GNGD algorithm [4]
only requires the near-end signal to be nearly stationary. In the
proposed INLMS method, both signals can be non-stationary,
which is a requirement for double-talk robustness.

It should be noted that the per-sample complexity of the
proposed algorithm only differs from the complexity of the
“classic” algorithm in [1] by a constant (O(1)). For example,
the total increase in complexity for the real-valued case isdue
to the increased cost of computingη (n) and amounts to only
23 multiplications, 5 additions, 2 divisions and 1 exponential.
Considering that the algorithms have anO(L) complexity (L is
the filter length), the difference is negligible for any reasonable
filter length.

IV. RESULTSAND DISCUSSION

We compare three algorithms:

• Direct learning rate adaptation [1]
• Generalized normalized gradient descent (GNGD) [4]
• INLMS algorithm (proposed)

In each case, we use a 32-second test sequence sampled at
8 kHz with an abrupt change in the unknown systemh (n)
at 16 seconds. The impulse responses are taken from ITU-
T recommendation G.168 (impulse responses D.7 and D.9)
and the filter length is 128 samples (16 ms). We choose
ρ = 0.005 since it gave good results over a wide range of
operating conditions (ρ should be inversely proportional to the
filter length). To make the comparison fair, we also used the
exponential update for the Direct method (ρ = 0.0005 gave
the best results) and the GNGD method (ρ = 0.005 gave the
best results).

We test the algorithms for three scenarios:

1) Both the inputx (n) and the interferencev (n) are white
Gaussian noise (Fig. 3)

2) The inputx (n) is speech and the interferencev (n) is
white Gaussian noise (Fig. 4)

3) Both the inputx (n) and interferencev (n) are speech
(Fig. 5) with frequent overlap (double-talk)

The normalised misalignment is defined as:

Λ (n) =
∥∥∥ĥ (n)− h (n)

∥∥∥
2

/ ‖h (n)‖
2 (13)

In Fig. 3 we can see that all three algorithms successfully
converge, albeit with differing convergence rates. In Fig.4 it
can be observed that the direct algorithm fails to converge
for scenario 2 where the input is non-stationary, but GNGD
and INLMS perform well. Finally in Fig. 5 we see that when
the interference is non-stationary, only the proposed INLMS
algorithm performs well.
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Figure 3. Normalised misalignment for white Gaussian inputand interference
(scenario 1) with an abrupt change in the unknown systemh (n) at 16
seconds. All algorithms converge.
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Figure 4. Normalised misalignment for typical speech inputand white
Gaussian interference (scenario 2) with an abrupt change inthe unknown
systemh (n) at 16 seconds. The direct algorithm diverges.
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Figure 5. Normalised misalignment for typical speech inputand interference
(scenario 3) with an abrupt change in the unknown systemh (n) at 16
seconds. Note that the direct method frequently diverges, and the GNGD
method diverges less often, but still significantly between3-4 seconds, at 6
seconds, 14 seconds and 31 seconds. All the divergence events are due to
double-talk, except at 3-4 seconds, where only interference is present.

V. CONCLUSION

We have proposed a new interference-normalised least mean
square (INLMS) algorithm, based on the gradient-adaptive
learning rate class of algorithms. We have demonstrated that
unlike other gradient-adaptive methods, it is robust to non-
stationarity of both the input and interference signals. This
robustness is achieved by using a control parameter whose
optimal value is independent of the power of the input and
interference signals and instead depends only on the filter
misalignment. This allows the instantaneous learning rateto
react very quickly even though the control parameter cannot.
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