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Abstract—An interference-normalised least mean square
(INLMS) algorithm for robust adaptive filtering is proposed .
The INLMS algorithm extends the gradient-adaptive learning
rate approach to the case where the signals are non-stationa
In particular, we show that the INLMS algorithm can work even
for highly non-stationary interference signals, where pre&ious
gradient-adaptive learning rate algorithms fail.

Index Terms—NLMS, gradient-adaptive learning rate, adap-
tive filtering
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I. INTRODUCTION
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Figure 1. Block diagram of echo cancellation system.

The choice of learning rate is one of the most important
aspects of least mean square adaptive filtering algorithmbere x (n) = [z (n),z(n—1),...,z(n— L+ 1)]" and
as it controls the trade off between convergence speed angh) is the learning rate. Here, we propose to extend this

divergence in presence of interference.

algorithm, by adaptively updating. (n). By adopting our

In this paper, we introduce a new interference-normaliseghproach, we develop an algorithm which we call the INLMS

least mean square (INLMS) algorithm. In the same way

atgorithm and which works even for highly non-stationary

the NLMS algorithm introduces normalisation against thiaterference signals, where previous gradient-adapdiaming
filter input « (n), our proposed INLMS algorithm extends theate algorithms fail.

normalisation to the interference signaln). The approach is
based on the gradient-adaptive learning rate class ofitigus

[0, [2], [3], [4], but improves upon these algorithms by hgi
robust to non-stationary signals.

Section[1) introduces existing gradient-adaptive leagnin
rate algorithms and their limitations. Sectignl Ill desesb
our proposed INLMS algorithm, followed by the results and
discussion in Sectiop IV. Sectidnl V concludes this paper.

We consider the adaptive filter illustrated in Hig. 1, where

the input signal: (n) is convolved by an unknowh (n) filter

Il. GRADIENT-ADAPTIVE LEARNING RATE

(to producey (n)) which has an additive interference signal

signal v (n), before being observed as(n). The adaptive
filter attempts to estimate the impulse respoﬁs(ez) to be

as close as possible to the real impulse respénge based
only on the observable signalgn) andd (n). The estimated
convolved signalj (n) is subtracted fromd (n), giving an

output signak (n) containing both the interfereneg(n) and

a residual signat (n) = y(n) — g (n). In many scenarios,
such as echo cancellation, the interferende) is actually

the signal of interest in the system.

The standard normalised least mean squares (NLMS) al

rithm is given by:

e(n)=d(n)—h (n—1)x(n) 1)
B(n) = b (n-1) + ﬁ mxm) @
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Gradient-adaptive learning rate algorithms are based en th
fact that when the adaptation rate is too small, the gradient
tends to keep pointing in the same direction, while if it is
too large, the gradient oscillates. Based on the behavibur o
the stochastic gradient, it is thus possible to infer whethe
the learning rate must be increased or decreased, and lsevera
methods have been proposed in the past to adjust the learning
based on the gradient.

These methods each have cantrol parameter that is

ed to determine the learning rate. In the case of [1], [2],
3], the control parameter is the learning rate itself. le th
generalized normalized gradient descent (GNGD) algorithm
[4] the (normalised) learning rate is:

() = Folx @I

I ()| + € (n)

where € (n) is the control parameter. Because the control
parameter is adapted based on the NLMS stochastic gradi-
ent behaviour, it can only vary relatively slowly (typicall
requiring tens or hundreds of samples). For that reasos, it i
important for the optimal learning rate not to depend ondapi
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changes of the control parameter. We will show in the newtheren (n) is a form of normalised filter misalignment, and
section that none of the methods cited above can fulfil this easier to estimate thal {r? (n)} directly, because it is

condition for non-stationary sources. assumed to vary slowly as a function of time. Although it is
possible to estimate (n) directly through linear regression,
A. Analysis For Non-Sationary Sgnals the estimation remains a difficult problem.

Under the assumption that(n) andv (n) are zero-mean In this paper we propose to apply a gradient adaptive
and uncorrelated to each other and thdt) is i.i.d., the approach using (n) as the control parameter. By substituting
theoretical optimal learning rate is equal to the residoal- (8) into (4), we obtain the learning rate:

error ratio [5]: ’E( )
E{r?(n)} (n) = min [ 5 (n-1) 27 1 )
o (1) = iyt (4) 3 )

wherer (n) = y(n) — ¢ (n) is the (unknown) residual echo =) =) . .
and e (n) is the error signal. It turns out that although thé(vhere o; (n) and o¢ (n) are respectively the estimates for

assumption om (n) is not verified for speechJ(4) nonetheles{ {yQ.(”)} andE {¢® (n)} and the upper bound imposed by

remains a good approximation. Earlier gradient-adapliye-a the min (-) reerct§ the fact that the optimal learning rate can

rithms vary 1« (n) directly as a response to the behaviour di€Ver exceed unity.

the gradient £ (n) is the control parameter). It is a sensible

thing to do if one assumes tha{n) andx (n) are stationary A Adaptation

signals, because it means that bétir? (n) } andE {e? (n)}

vary slowly and, as a consequence, so dogs (n). On the

other hand, if the statistics of either(n) or = (n) changes

abruptly, then the algorithm is not capable of changing)

fast enough to prevent the adaptive filter from diverging.
The GNGD algorithm provides more robustness to no

stationarity. If we examine (n) more closely, it is reasonable

to surmise thaf(3) eventually converges to the optimahiear . S
Le) y g P sy control parameter;(n) by computing the derivative of the

rate defined by[{4). Assuming steady state behavie(r)(is R e ;

stable) anduy = 1, we find (by multiplying the left hand side squared erro€ (_n) - 2¢ (n? © (n),_th|_s time W'th. respect

numerator and denominator by(n)) that: to n(n —1), using the chain derivation rule without the
independence assumptian [1]] [6]:

In this paper we bypass the difficulty of estimating.)
directly and instead propose a closed-loop gradient adgapti
estimation ofn(n). The parameten(n) is no longer an esti-
mate of the normalised misalignment, but is instead adapted
H} closed-loop in such a way as to achieve a fast convergence
of the adaptive filter.

As with other gradient-adaptive methods we update the

FE {7‘2 (n)} B E {72 (n)} 5) e ) e 9
E{P ()} =1 e B{& () o S (e e () 5o )

on(n—=1) 2\ 9n(n-1) on (n—1)

where v (n) = E{r?(n)} /|Ix(n)|* is analogous to the u =5

filter misalignment. Assuming that(n) andv (n) are zero- _ _p)emxTmyn-1) f\@(”) ®)

mean and uncorrelated to each other, we hBave? (n)} = % (n)]? o2 (n)

E{r*(n)}+E {v*(n)}, which results in the relation(n) =

E{v?(n)} /vy (n). In other words, the optimal value for Where

the gradient-adaptive parametefn) depends on the filter nx(n)x? (n

misalignment and on the variance of the interference signa¥’ (n) = [ _ad )||x((n))||2 ( )] ¥ (n—1)+x(n)e" (n)

but is independent of the variance of the input signal. Beeau (9)

¢(n) can only be adapted slowly over time, there is & 5 smoothed version of the gradient. We further rewrite the
implicit assumption in[(B) thaf’ {v? (n)} also varies slowly. update ofy (n) in @) as

While this is a reasonable assumption in some applicatibns,

does not hold for scenarios like echo cancellation, wheee th ¥ (n) = (n—1) w(n) x (1) [ H (n) % (n—l)}

interference is speech (double-talk) that can start or stop B [[x (n)]|*
any time. +x(n)e* (n) (10)
Ill. PROPOSEDALGORITHM FOR NON-STATIONARY so that it does not require a matrix-by-vector multiplioati
SIGNALS Based on this derivative, we propose the following expo-

In previous work [[5], we proposed to uskl (4) directlyential update ofp(n). We propose to use an exponential
to adapt the learning rate. Whilg {62 (n)} can easily be update in place of a more standard additive update since the
estimated, the estimation of the residual eciﬁ({r2 (n)} is misalignment has a large dynamic range; and we want the step
difficult because one does not have access to the real fils&ze to scale with the value of(n). The exponential update
coefficients. One reasonable assumption we can make is tliggiven as follows:

E {72 (n)} =1 (n) E {y2 (n)} 0 o0& (n)
~ 1 (n-1) B {i ()} ©) n(m) =n(n-Lep (;a—(n)m> (D

€
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9(n) = :fl(n_1)x(n) learning rate also becomes smaller. When the echo path
e(n)=d(n)—7g(n changes, the gradient starts pointing steadily in the same
o2 (n) = min ( £ {| i ()PV, B 1y ()2 direction, thus significantly increasingn), which is a clear
s 381y Ero 419 () sign that the filter is no | ly adapted
e . N 0 - ) g ilter is no longer properly adapted.
0 (n) = max El{le(n)l },E3{|e(n)| },Elo{le(n)l }) In gradient adaptive methods] [1].1[2].1[3], the implicit
(n) = min (v (n—1) o2 (n) 1 assumption is that both the near-end and the far-end sigrals
H o o2(n)’ nearly stationary. We have shown that the GNGD algorithim [4]
h(n)=h(n—1)+ %e* (n)x (n) only requires the near-end signal to be nearly stationarghe
xp%(nm{e(n)xf*(n)w(n—n} proposed INLMS method, both signals can be non-stationary,
n(n) =n(n—1)ex = T2 ()23 () ] which is a requirement for double-talk robustness.
_ 1y a0 : Ho _ It should be noted that the per-sample complexity of the
Y=+ (f ) [ (n)HzX(n) [X (n) ¢ (n 1)} proposed algorithm only differs from the complexity of the
+e* (n)x(n) “classic” algorithm in [1] by a constant)(1)). For example,

the total increase in complexity for the real-valued casiuis
to the increased cost of computingn) and amounts to only
23 multiplications, 5 additions, 2 divisions and 1 exporant
C9nsidering that the algorithms have@tL) complexity [ is
She filter length), the difference is negligible for any reaable
filter length.

Figure 2. Summary of the INLMS algorithm

wherep is a step size and we have normalised the gradi

o by o2 (n) to obtain a non-dimensional value.

It remains to estimatér\g (n) andg—g(n). For ;E(n) we
have the following recursive estimator with time constant
(o—g (n) is estimated similarly): V. RESULTSAND DISCUSSION

- 1Y) - 1 We compare three algorithms:
By {le@} = (1= ) Bx {le =D} + 5 le P compare three aigorthms:
N N (12) « Direct learning rate adaptation|[1]

The question then becomes what value /6f to use. To » Generalized normalized gradient descdBNGD) [4]

maximise stability, a conservative approach is to err on the® INLMS algorithm (proposed)
side of picking the smallest? (n) and the biggest2 (n) out In each case, we use a 32—se_cond test sequence sampled at
of the set of estimated obtained by varying For efficiency, 8 kHz with an abrupt change in the unknown systhrfn)
we have chosen a subset of all possiblevalues. The values at 16 seconds. The impulse responses are taken from ITU-
N = 3 and N = 10 provide good short- to medium-termT recommendation G.168 (impulse responses D.7 and D.9)
term estimation, though the algorithm is not very sensitive and the filter length is 128 samples (16 ms). We choose
the exact choice oN. For the estimation 062 (n), we also © = 0-005 since it gave good results over a wide range of
include N = 1 to make sure that even an instantaneous on§&erating conditionsy(should be mvgrsely proporuonal to the
of interference cannot cause the filter to diverge. The cetapl filter 1ength). To make the comparison fair, we also used the
algorithm is summarised in Fig] 2. exponential update for the Direct methoa £ 0.0005 gave

The last aspect that needs to be addressed is the inifftff Pest results) and the GNGD methgd=( 0.005 gave the

condition. When the filter is initialised, all the weightsear best results). ) )

set to zero]ﬁ(o) = 0), which means thag (n) = 0 and no We test the algorithms for three scenarios:

adaptation can take place {0 (7) and (8). In order to bogistra 1) Both the input: (n) and the interference(n) are white
the adaptation process, the learning rate:) is set to a fixed Gaussian noise (Fidl 3)

constant (we usg¢ = 0.25) for a short time (until[(i") gives  2) The inputz (n) is speech and the interferencén) is

w(n) > 0.1). This ad hoc procedure is only necessary when white Gaussian noise (Fifll 4)

the filter is initialised and is not required in case of echthpa 3) Both the inputr (n) and interference (n) are speech

change. In practice, any method that provides a small initia  (Fig.[5) with frequent overlap (double-talk)

convergence can be used. . L . ,
9 The normalised misalignment is defined as:

. ~ 2

B. Analysis A =[a@ -nm| /@I @)

The adaptive learning rate described above is able to deal
with both double-talk and echo path change without explicit In Fig.[3 we can see that all three algorithms successfully
modelling. From[(7), we can see that when the interferencenverge, albeit with differing convergence rates. In gt
changes abruptly, the denominaig? (n) rapidly increases, can be observed that the direct algorithm fails to converge
causing an instantaneous decrease in the learning ratke Infor scenario 2 where the input is non-stationary, but GNGD
case of a stationary interference, the learning rate depend and INLMS perform well. Finally in Figll5 we see that when
both the presence of an input signal and on the misalignmené interference is non-stationary, only the proposed LM
estimate. As the filter misalignment becomes smaller, tladgorithm performs well.
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V. CONCLUSION
10 T T T T

Gdr\i{ég e We have proposed a new interference-normalised least mean
0 INLMS —— square (INLMS) algorithm, based on the gradient-adaptive

learning rate class of algorithms. We have demonstrated tha
unlike other gradient-adaptive methods, it is robust to-non

. stationarity of both the input and interference signalsisTh
robustness is achieved by using a control parameter whose
optimal value is independent of the power of the input and
. | interference signals and instead depends only on the filter
ol misalignment. This allows the instantaneous learning tate
react very quickly even though the control parameter cannot
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Figure 4. Normalised misalignment for typical speech inpatl white
Gaussian interference (scenario 2) with an abrupt chang&enunknown
systemh (n) at 16 seconds. The direct algorithm diverges.
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Figure 5. Normalised misalignment for typical speech iramd interference
(scenario 3) with an abrupt change in the unknown sysietm) at 16

seconds. Note that the direct method frequently diverged, tae GNGD

method diverges less often, but still significantly betw&ea seconds, at 6
seconds, 14 seconds and 31 seconds. All the divergencesesentdue to
double-talk, except at 3-4 seconds, where only interferéagresent.
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