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Abstract—Digital waveguide mesh (DWM) models are numer-
ical solvers for the wave equation in -dimensions. They are used
for obtaining the traveling-wave solution in practical acoustical
modeling applications. Although unstructured meshes can be used
with DWMs, regular mesh topologies are traditionally used due to
their implementation simplicity. This letter discusses the accuracy
of first-order approximations to numerical derivatives on more
general unstructured mesh topologies. The results are applied to
structured, regular mesh topologies as used in DWM modeling. A
comparison of 2-D and 3-D DWM topologies with respect to the
accuracy of first-order approximations to numerical derivatives is
presented.

Index Terms—Acoustic signal processing, acoustical modeling,
digital waveguides, finite difference methods, multidimensional
sampling, numerical derivatives.

I. INTRODUCTION

AS A NUMERICAL solver for the wave equation, the
digital waveguide mesh (DWM) approach is used in a

variety of audio synthesis and acoustical modeling contexts
including the vocal tract [1], musical instruments [2], [3],
and room acoustics [4], [5]. DWM approach is equivalent
to transmission line modeling (TLM) and finite-difference
time-domain (FDTD) methods [6]. Although it is sufficient to
use a 1-D DWM for simpler modeling problems such as string
instruments and the vocal tract, multidimensional DWMs are
used in other modeling problems such as the modeling of a
drum membrane or the acoustics of a room due to their inherent
multidimensionality.

It is possible to obtain the pressure, , and velocity, , com-
ponents of a modeled acoustical field on discrete junctions on
a DWM. While these components are sufficient to define the
acoustical field at a given position in space, other acoustical pa-
rameters may also be calculated from DWMs with reference to
the linear acoustic equations and the acoustic-energy corollary.
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In particular, the following parameters may be derived among
others:

Rate of change of fluid density

Rate of change of velocity

Vorticity

Rate of change of energy density

where is the fluid density after excitation, is the ambient
fluid density, is the vorticity, and is the acoustic energy
density [7].

The calculation of all of these acoustical quantities requires
the use of the vector operators, gradient , divergence ,
and curl , which in turn require partial derivatives of
the respective acoustical field component. While the direc-
tional derivatives are easy to obtain using a second-order
(i.e., three-point) finite difference approximation on rectilinear
and cubic mesh topologies due to the intuitive positioning of
their junctions, other mesh topologies lack efficient means of
calculation for second-order approximations.

This letter presents a comparison of different DWM topolo-
gies with respect to the accuracy of first-order approximations
to directional derivatives and is organized as follows: Section II
presents a method for calculating the directional derivatives on a
general unstructured -dimensional mesh. The approximation
errors are also discussed. Section III presents the application of
the results and a comparison of different mesh topologies with
respect to the accuracy of numerical derivatives. Section IV con-
cludes this letter.

II. NUMERICAL DERIVATIVES ON AN

UNSTRUCTURED MESH GRID

Although the use of unstructured mesh topologies with fi-
nite difference methods is not a new concept [8], they are tra-
ditionally not used with DWM models due to the difficulties in
using fractional delays for each bidirectional delay element in
the mesh. However, the calculation of the numerical derivatives
is given for unstructured meshes in this section without loss of
generality.

A. First-Order Finite Difference Approximation

Let us have a sample point with neighboring
sample points on an -dimensional
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Fig. 1. Node andM neighboring points in an arbitraryN -dimensional unstruc-
tured grid. û denotes the unit vector in the direction of the ith neighbor.

unstructured mesh grid. Let us also define the -dimensional
displacement vectors, , such that

(1)

where for is the unit
vector in the direction of the neighboring sample point in -di-
mensional hyperspherical coordinates, and denotes the Eu-
clidean norm of the vector. The unit vector in hyperspherical
coordinates can be represented in the Euclidean space as

...

(2)

where represents the angular coordinates of the hyper-
spherical coordinate system. Fig. 1 shows the unstructured mesh
grid topology.

For an -dimensional, real, differentiable function
sampled on the described grid, a two-point first-order approx-
imation to the directive derivatives can be formed for each
neighboring point, , of the central point, , such that

(3)

This approximates the gradient of the function, , in the
direction of . Therefore, the first-order finite difference ap-
proximation is a predictor of the following projection of the gra-
dient in that direction:

(4)

It is then possible to express the ensemble of these approxima-
tions as a set of linear equations such that

(5)

where

(6)

...
...

. . .
...

(7)

(8)

and represent the Cartesian coordinates.
For , the linear system of equations is underdeter-

mined and a unique solution does not exist, while for ,
a unique solution exists if the matrix is not singular (i.e., the
equations are linearly independent). For , which is also
the case for regular mesh grids in two and three dimensions [9],
the solution for can be obtained in the optimal sense as

(9)

where is the Moore–Penrose pseudoinverse of the matrix
which is unique for each different positioning of sample points.

B. Approximation Errors

The approximation error, , for the directional derivative,
, is defined as

(10)

A frequency-domain expression for the error can be obtained by
the -dimensional spatial Fourier transform such that

(11)

(12)

where is the spatial frequency vector
with . It is then possible to express the approxi-
mation error in the spatial frequency domain as

(13)

(14)

When the spatial frequency vector is orthogonal to the displace-
ment vector (i.e., ) or when , the corre-
sponding error is zero.

The projection of the approximation errors to Cartesian coor-
dinates can be obtained as in (9) such as

(15)

From (14), it is possible to rewrite (15) such that

(16)
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Fig. 2. Approximation error, �(!), with ��=2 � ! ; ! � �=2 for (a) 2-D rectilinear, (b) triangular, and (c) hexagonal regular grids.

TABLE I
MAXIMUM AND AVERAGE APPROXIMATION ERRORS IN dB

where . Note that
is determined solely by the local topology of the mesh and

is independent of spatial frequency while is dependent both
on the local topology and on the spatial frequency.

The approximation error is vectorial and its square magnitude
can be obtained as

(17)

where represents the Hermitian (conjugate) transpose of
the approximation error vector. This can be expressed as

(18)

It is then possible to characterize the accuracy of the mesh grid
by defining an error function, , which is the ratio of the
magnitude of the approximation error to the magnitude of the
gradient of the sampled function at that spatial frequency such
that

(19)

An average value for the approximation error function, ,
can be obtained by averaging for all node positions in the
mesh. In a structured, regular mesh, each sample point has the
same approximation error, and thus, . Also, a fre-
quency-independent error index, , can be obtained by aver-
aging the approximation error across all frequencies within the
frequency bandwidth limits of the mesh grid.

III. COMPARISON OF DWM TOPOLOGIES

Although it is possible to use unstructured meshes with DWM
models [6], regular meshes for which the distance between the
sample points is constant are preferred as they allow simpler
models with the use of unit delay elements in between junctions.
There is only a limited number of regular mesh topologies in two
and three dimensions.

A. The 2-D DWM Topologies

Three regular 2-D grid topologies exist: rectilinear, triangular,
and hexagonal. For the triangular mesh, , for the recti-
linear mesh, , and for the hexagonal mesh, . In all
cases, , where for the 2-D setting. The reader is
referred to [10] for more details of these topologies.

Fig. 2 shows the contour plot of values in logarithmic
scale for the three mesh topologies. The interjunction distance

for each topology is selected to be equal to a unit distance,
i.e., to allow a comparison between topolo-
gies. If another comparison for equal mesh density (i.e., same
number of elements per unit area) is considered, the interjunc-
tion distance for the triangular mesh will be higher than recti-
linear mesh, which in turn will be higher than the hexagonal
mesh. The mesh densities for the three topologies are given as

, , and , for
rectilinear, triangular, and hexagonal meshes, respectively [10].

The maximum and averaged error values across all spatial
frequencies for different mesh topologies for the same inter-
junction distance, , and the same mesh density

are summarized in Table I. When the same
interjunction distance is used, the lowest approximation errors
are obtained for the triangular mesh. When the mesh densities
are equal, the lowest average approximation error is obtained
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Fig. 3. Approximation error, �(!), with ��=2 � ! ; ! ; ! � �=2 for (a)
cubic, (b) tetrahedral, (c) CCP, and (d) BCC regular grids. The shading is the
same for all figures, where black represents �9 dB, and white represents �3
dB.

with the rectilinear mesh, and the lowest maximum approxima-
tion error is obtained with the triangular mesh. The rectangular
mesh has lower approximation errors in the diagonal directions,
i.e., . The triangular mesh has a fairly isotropic
error distribution. The hexagonal mesh has lower approximation
errors in directions.

B. The 3-D DWM Topologies

There exist four regular 3-D mesh topologies: cubic, tetrahe-
dral, body-centric cubic (BCC), and cubic close-packed (CCP).
For the cubic mesh, , for the tetrahedral mesh, ,
for the BCC mesh, , and for the CCP mesh, . As
with the 2-D case, for all topologies with . The
reader is referred to [9] for the details of these topologies.

Fig. 3 shows the visualization of values in logarithmic
scale for the four 3-D mesh topologies at . The inter-
junction distance for each topology is selected to be equal
to a unit distance, i.e., , to allow a comparison
between topologies. Another comparison is also made for the
same mesh density in all topologies. Mesh densities for the 3-D
topologies are given as , ,

, and , for cubic, tetrahe-
dral, CCP, and BCC topologies, respectively [9].

The maximum and averaged approximation error values
across all spatial frequencies for different mesh topolo-
gies for the same interjunction distance and same mesh
density (i.e., same number of elements per unit volume)

are summarized in
Table I. It may be observed that the lowest errors are obtained
for the CCP topology when the same interjunction spacing
is used. On the other hand, while the mesh densities are the
same, the average error is the lowest for the cubic mesh and the
maximum error is lowest for the CCP mesh.

IV. CONCLUSIONS

A comparison of different multidimensional digital wave-
guide mesh topologies with respect to the accuracy of numerical
derivatives was presented in this letter. The derivation of the
numerical derivatives in a general -dimensional mesh was
given. A measure for quantifying the approximation error in
the spatial frequency domain was proposed. The results were
applied to regular DWM grid topologies in 2-D and 3-D. In
2-D, the rectilinear, triangular, and hexagonal mesh topologies
were compared. In 3-D, cubic, tetrahedral, CCP, and BCC,
mesh topologies were compared. The results suggest that for
the same internodal distance, the triangular mesh in 2-D and
the CCP mesh in 3-D have lower approximation errors. For the
same mesh density, rectilinear mesh in 2-D and cubic mesh in
3-D have the lowest average errors. However, the triangular
mesh in 2-D and CCP mesh in 3-D have the lowest maximum
approximation error. Although the comparison was given for
the regular mesh structures only, the results are general and are
readily applicable to unstructured mesh topologies.
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