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Abstract— Polarity coincidence correlator (PCC), when where
used to estimate the covariance matrix on an element-by- sgr(z) = { +1 x>0 )
element basis, may not yield a positive semi-definite (PSD) -1 1z<0
estimate. Devlin et al. [1], claimed that element-wise PCC
is not guaranteed to be PSD in dimensiong > 3 for real
signals. However, no justification or proof was available on
this issue. In this letter, it is proved that for real signalswith T 1 N
p < 3 and for complex signals withp < 2, a PSD estimate 7 = sin <§N Z smsy,). 3)
is guaranteed. Counterexamples are presented for higher i—1
dimensions which yield invalid covariance estimates.

Using (1), an estimate of from N iid observations
i, yi,4 = 1,..., N is given by

wheres,; = sgnx;). In the complex case, we can define
Index Terms— Polarity coincidence correlator, element- the complex sign function as sgn) = sgnR[z]) +

wise covariance estimate, positive semi-definite. jsgn(S[z]), whereR[z] and|[x] are real and imaginary

parts ofz, respectively. In the Appendix, it is shown that

|. INTRODUCTION AND PRELIMINARIES R[] = sin (%E{éﬁ [sg@(az)sgr‘ﬁ(y)]})

OLARITY coincidence correlator (PCC) is a robust Y & (M
and nonparametric estimator of bivariate correlation Sr] = sin (ZE{‘S [SgQ(m)Sgrﬁ(y)]}) “)

[1], [2]. It is also a fast and low-cost estimator fokyhere(.)* denotes complex conjugate. Similar fid (3), an

applications with extraordinary computational compleXstimate for the complex case is obtained by replacing
ity. Radio astronomy is an instance in which PCC is lpectation with the average as

far the most favorable correlator [3].

Several researchers have investigated the statistical P = sin (j 1
error of PCC as an estimate of bivariate correlation 4N¢
[4], [5]. In multivariate case, using PCC to estimate
elements of the covariance matrix does not guarantee ;, — gip (fi
a PSD matrix estimator [1], [6]. Devlin et al. [1, Sec. 4N
4.4], referr_ing to a personal communica_tion, claim f[h here (-)z and (-); denote real and imaginary parts,
element-wise PCC (or "quadrant correlation”), may yiel spectively.
an invalid covariance estimate fpr> 3 and real signals.

In this letter, we prove that for real S|gr_1als Wy_thg 3, . MAIN RESULT
and complex signals witlp < 2, PCC estimate is PSD.

For higher dimensions, counterexamples are presente#€t Bpxp be the covariance matrix o random
which yield invalid covariance estimates. signals with unit diagonal elements and off-diagonal

Let = andy be two zero-mean real random variable§/€Mentsri; : 4,5 =1,---,p. Forp = 2 case, a valid
estimate should satisf§| < 1. For the real

with correlation coefficient distributed with elliptical COrrelation es ‘
7| = |sin(-)] < 1. For the complex case,

symmetry. It is well known that [6]: case of [(B),
regarding[(5) define. and 8 such that’p = sin(«) and

77 = sin(f). Then
N
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r = sin (gE{sgr{x)Sgr(y)}) )
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Fig. 1.  Polarity coincidence diagram of,y,z. Black strips Sw | ++ —+ S5z |+ ——

denote the packed positions of polarity coincidences oh esgnal
with signal z. The strips lengthsVa,; are the number of polarity

coincidences. . o L L
strip of z is in the left corner, and minimum when it is

in the right corner. After some calculations, the range of
the same manner, we can show thaty + 5 < 5 which 7493 is found as
gives|a|+|3| < 7. Now it is straightforward to see that
|f|2 = sinz(a)+sin2(ﬁ) < sin2(|a|)—|—sin2(%—|a|) =1.
Forp = 3 and real signals, we calculate the valid range |t should be noted that the effect of finit¥ is the
of the elements of & x 3 covariance matrix. Then we quantization of the accessible values. Now, it can be

|rs12 + 7513 —1 <71go3 <1— |72 —7rs13].  (9)

show that PCC estimate lies in this range. readily verified that
i T
A. Valid Range of Covariance St (5(1 oz = m?")) B

Let R € R3*3 be a covariance matrix with unit diag- r1aT13 + \/(1 — 1) (1= 13,) (10)
onal elements. Valid range a3 should be calculated
when 712,713 € [~1,+1] are fixed. It can be readily 2"d

shown that R| > 0 implies that sin (g( | ro12 + 13| — 1)> _
| r23 — r1ar1s] < \/ (1—riy) (1 —rfs)- () rigrig — \/ (1—12)(1—12). (11)
B. PCC Covariance Estimate Therefore g3 = sin (% rs23) satisfies[(I7). This, besides

|12 < 1 and|f13| < 1 can be used to show the| > 0
Igas in (7)) and the assertion is proved thatzce 3 and
real data, PCC estimate is a valid covariance matrix.

Assume random sign sequencgss,, s, with length
N. Consider the positions of polarity coincidence wit
s, as black positions or-+" and elsewhere as white
or "—". Obviously all of the positions ins, is "+"
and (sy;, s.;) have four states of++,+—, —+, ——}.
Since the permutation of the samples does not affect thdn this section, some counterexamples are presented to
estimate in[(B), put the samples ef, s,, s, from left show that PCC covariance estimate is not guaranteed to
in the order of{+ + —,+ + +,+ — +,+ — —} as in be PSD in dimensiong > 3 for real signals ang > 2
Fig.[d. Then any random sign sequences,gfs, ands, for complex signals. In real data case wjh= 4 and
can be replaced by the model in Fig. 1 with appropriatsimber of observationd/ = 4, the real sign sequences
strip lengthsNa; (with a; = 1) and relative positions of in Tablell results in an invalid covariance estimate. After
strips. simple computations, we will haves;s = rg34 = 0

Let R, be the covariance matrix of,,s,,s, with andras = rsu = res = rsq = 0.5. The covariance
elements i, i, k = 1,2,3. The maximum of-,;, = +1 estimate will be
occurs inas = 1 and the minimum ofr;12 = —1 in 1 0 0.7 07
ay = 0. In fact, roy = & 2%, saisyi = w[Nag — . 0 1 07 07
(N — Nas)] = 2as — 1, in other words Ry, = 07 07 1 0
07 07 O 1

IIl. COUNTEREXAMPLES

o — L+ 751 ®)
‘ 2 with eigenvalues—0.4,1,1,2.4]. ThenR;, with a neg-
rs12 andrg g are determined by the values @f and ative eigenvalue, is not a valid covariance matrix.
a3, Tsii = 1, and the possible range ofy3 should We can augment this example to give a counter-
be calculatedr,os depends on the number of polarityexample for dimensiop = 5. Repeat each sign twice

coincidences ofy and z which is maximum when the to have four signals with number of observatidhs.




Note that the covariance matrix does not change. Na, MIMO Communication Systems

The covariance estimate will be most new wireless communication systems increasing
user and data capacity (e.g. UMTS/W-CDMA, 802.11n
. R1 0 WLAN, 60 GHz WPAN). Multiple antennas can provide

Raug = { ol 1 ] ‘ diversity gain and/or better antenna gain through beam-

forming in base station and/or handset. Beamformers
where0 is the4 x 1 vector of zeros. As a consequencge.g. conventional or Capon) usually utilize an estimate
of the structure ofR,,,, eigenvalues ofR; are also of the array covariance matrix [8], that may be obtained
eigenvalues oTRaug. Therefore,Raug is an invalid co- using PCC as a power-saving estimator. It is well known
variance matrix. This procedure can continue to produtteat performance improvement due to diversity gain re-
counterexamples for higher dimensions in real data cadaces as the number of antennas increases. This, besides
In case of complex signalg; = 3 and N = 2, a space limit on the handset and coupling phenomena have
counterexample is given in Talle I, where +” denotes resulted in the prevalence of MIMO systems with very

—1+ j. The resulting estimate is few (usually 2 to 4) antennas [9], [10].
1 0.7—750.7 0 B. Blind Source Separation (BSS)
R=|07+;0.7 1 0.7—-70.7 BSS has found numerous potential applications in
0 0.7470.7 1 the field of audio signal processing [11]. An array of

. microphones is used to gather multiple signal mixtures
with eigenvalue$—0.4, 1,2.4] which makeR an invalid and diverse methods are used to extract signals from
covariance matrix. Augmentation of the complex signghese observations. A large class of BSS methods use
set for higher dimensions is similar to the real casgsal-valued inter-sensor covariances with different time
except that the new added signal alternates betwdggs to estimate the mixing matrix and desired signals
"++" and "—-". (e.g. SOBI [12], JADE [13]). This also includes in-

put signals whitening as a preprocessing that converts
the convolutive source separation problem to a simpler
IV.  APPLICATIONS OF THERESULTS independent component analysis (ICA) problem. This
| . . . . fa{nily of two-step algorithms is known as AMUSE
: th'.s section, we dl_scuss the pfac“ca' usefulness\gmgorithm for MUItiple Source Extraction). PCC, as
the main results of this 'e“ef which focus_es on lo fast correlator, can make real-time operation more
numb_er of Sensors. In the S|gnal brocessing .Contefgasible in these methods. For realistic situations where
covariance estimation often arises in the multl-sens\?/r have fewer sensors than sources, underdetermined

applications where parameters of interest are functionsrﬁ thods are proposed [14]. Many methods are presented

the true data covariance matrix. Although PCC estlmafter the special case of 2 sensors and multiple sources

of the covariance matrix exhibits attractive features su;}.g' DUET [15], and [16]), and also quite few sensors

as robustness and extremely low complexity, it cann e common to many realizations of the methods [12]
be guaranteed to be PSD in the applications with Iar?fﬂr] ’

number of sensors.
Selection of the number of sensors in an application APPENDIX
depends on both nature of the problem and practical CompPLEX PCC

limitations. In theory, more sensors always results in | o . y be two zero-mean, unit-variance, and circu-
) ’ i)

a better estimate, as proved in many cases such| 4, symmetric complex random variables with indepen-

direction finding through examination of the Cramer-Ragant real and imaginary parts. To proyé (4), we expand
bounds [7]. In practice, complexity issues usually limif,q expectation as

the number of sensors. Large arrays are used whenever

performance be of the main importance regardless &fS9N.()s9M.(y)} = E{[sgnzryr) + sgn(z y;)]

the cost. In such cases as DOA estimation in military +j [sanzryr) — sgnzryr)]}- (12)
environments (radar and sonar), thousands of Sen_sl‘—?ﬂ"f‘thermoreE{my*}
are not uncommon. Nevertheless, most low-cost civil

applications use very few sensors. In the following, we E{zryr +w1y1} =R

consider some of these applications. E{zryr — xzgyr} =rr. (13)

= r implies that



Circular symmetry ofr andy yields [15] O.Yilmaz and S. Rickard, "Blind separation of speecixtunies
via time-frequency masking'|EEE Trans Signal Proc., vol. 52,
E{zryr} = E{xryr} = rr/2 No. 7, pp. 1830-1847, July 2004.
16] P. Comon, "Blind identification and source separatiorix 3
E{ziyr} = —E{zpyr} =r1/2 (14) 19 P g

under-determined mixtureslEEE Trans. Sgnal Proc., vol. 52,

and E{:L'%z} _ E{l’%} _ E{y%} _ E{y%} _ % Then No. 1,pp. 11-12, Jan. 2004.
the correlation coefficients will be

Cor(zg,yr) = Cor(zr,yr) =rr
COF(:L'[,yR) = — COI’(:L'R,y[) =T7Ty. (15)

Substituting [(1b) and{1) intd (12) gives
E{sgn.(z)sgri(y)} = 4/m [sin™" (rr) + jsin~" (r7)] (16)
which implies [(4).
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