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On The Positive Definiteness of Polarity
Coincidence Correlation Coefficient Matrix
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Abstract— Polarity coincidence correlator (PCC), when
used to estimate the covariance matrix on an element-by-
element basis, may not yield a positive semi-definite (PSD)
estimate. Devlin et al. [1], claimed that element-wise PCC
is not guaranteed to be PSD in dimensionsp > 3 for real
signals. However, no justification or proof was available on
this issue. In this letter, it is proved that for real signalswith
p ≤ 3 and for complex signals withp ≤ 2, a PSD estimate
is guaranteed. Counterexamples are presented for higher
dimensions which yield invalid covariance estimates.

Index Terms— Polarity coincidence correlator, element-
wise covariance estimate, positive semi-definite.

I. INTRODUCTION AND PRELIMINARIES

POLARITY coincidence correlator (PCC) is a robust
and nonparametric estimator of bivariate correlation

[1], [2]. It is also a fast and low-cost estimator for
applications with extraordinary computational complex-
ity. Radio astronomy is an instance in which PCC is by
far the most favorable correlator [3].

Several researchers have investigated the statistical
error of PCC as an estimate of bivariate correlation
[4], [5]. In multivariate case, using PCC to estimate
elements of the covariance matrix does not guarantee
a PSD matrix estimator [1], [6]. Devlin et al. [1, Sec.
4.4], referring to a personal communication, claim that
element-wise PCC (or ”quadrant correlation”), may yield
an invalid covariance estimate forp > 3 and real signals.

In this letter, we prove that for real signals withp ≤ 3,
and complex signals withp ≤ 2, PCC estimate is PSD.
For higher dimensions, counterexamples are presented
which yield invalid covariance estimates.

Let x andy be two zero-mean real random variables
with correlation coefficientr distributed with elliptical
symmetry. It is well known that [6]:

r = sin
(π

2
E{sgn(x)sgn(y)}

)

(1)
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where

sgn(x) =

{

+1 : x ≥ 0
−1 : x < 0

(2)

Using (1), an estimate ofr from N iid observations
xi, yi, i = 1, . . . , N is given by

r̂ = sin
(π

2

1

N

N
∑

i=1

sxisyi

)

. (3)

wheresxi = sgn(xi). In the complex case, we can define
the complex sign function as sgnc(x) , sgn(ℜ[x]) +
j sgn(ℑ[x]), whereℜ[x] andℑ[x] are real and imaginary
parts ofx, respectively. In the Appendix, it is shown that

ℜ[r] = sin
(π

4
E
{

ℜ [sgnc(x)sgn∗c(y)]
}

)

ℑ[r] = sin
(π

4
E
{

ℑ [sgnc(x)sgn∗c(y)]
}

)

(4)

where(·)∗ denotes complex conjugate. Similar to (3), an
estimate for the complex case is obtained by replacing
expectation with the average as

r̂R = sin
(π

4

1

N

N
∑

i=1

[sxiRsyiR + sxiIsyiI ]
)

r̂I = sin
(π

4

1

N

N
∑

i=1

[sxiIsyiR − sxiRsyiI ]
)

(5)

where (·)R and (·)I denote real and imaginary parts,
respectively.

II. M AIN RESULT

Let Rp×p be the covariance matrix ofp random
signals with unit diagonal elements and off-diagonal
elementsrij : i, j = 1, · · · , p . For p = 2 case, a valid
correlation estimate should satisfy|r̂| ≤ 1. For the real
case of (3),|r̂| = | sin(·)| ≤ 1. For the complex case,
regarding (5) defineα andβ such that̂rR = sin(α) and
r̂I = sin(β). Then

α+ β =
π

4N

N
∑

i=1

[sxiR(syiR − syiI) + sxiI(syiR + syiI)]

(6)
and it can be easily checked that the argument of sum-
mation in (6) belongs to{±2}. This yieldsα+β ≤ π

2
. In
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Fig. 1. Polarity coincidence diagram ofx,y, z. Black strips
denote the packed positions of polarity coincidences of each signal
with signal x. The strips lengthsNai are the number of polarity
coincidences.

the same manner, we can show that± α ± β ≤ π
2

which
gives|α|+ |β| ≤ π

2
. Now it is straightforward to see that

|r̂|2 = sin2(α)+sin2(β) ≤ sin2(|α|)+sin2(π
2
−|α|) = 1.

Forp = 3 and real signals, we calculate the valid range
of the elements of a3 × 3 covariance matrix. Then we
show that PCC estimate lies in this range.

A. Valid Range of Covariance

Let R ∈ R
3×3 be a covariance matrix with unit diag-

onal elements. Valid range ofr23 should be calculated
when r12, r13 ∈ [−1,+1] are fixed. It can be readily
shown that|R| ≥ 0 implies that

| r23 − r12r13| ≤
√

(

1− r2
12

)(

1− r2
13

)

. (7)

B. PCC Covariance Estimate

Assume random sign sequencessx, sy, sz with length
N . Consider the positions of polarity coincidence with
sx as black positions or ”+” and elsewhere as white
or ”−”. Obviously all of the positions insx is ”+”
and (syi, szi) have four states of{++,+−,−+,−−}.
Since the permutation of the samples does not affect the
estimate in (3), put the samples ofsx, sy, sz from left
in the order of{+ + −,+ + +,+ − +,+ − −} as in
Fig. 1. Then any random sign sequences ofsx, sy andsz
can be replaced by the model in Fig. 1 with appropriate
strip lengthsNai (with a1 = 1) and relative positions of
strips.

Let Rs be the covariance matrix ofsx, sy, sz with
elementsrsik, i, k = 1, 2, 3. The maximum ofrs12 = +1
occurs ina2 = 1 and the minimum ofrs12 = −1 in
a2 = 0. In fact, rs12 = 1

N

∑N
i=1

sxisyi = 1

N
[Na2 −

(N −Na2)] = 2a2 − 1, in other words

ai =
1 + rs1i

2
. (8)

rs12 andrs13 are determined by the values ofa2 and
a3, rsii = 1, and the possible range ofrs23 should
be calculated.rs23 depends on the number of polarity
coincidences ofy and z which is maximum when the

TABLE I

COUNTEREXAMPLES FOR REAL AND COMPLEX DATA

Real Case Complex Case

sx + + + +

sy + + − −

sz + + + −

sw + + − +

sx ++ ++

sy ++ −+

sz ++ −−

strip of z is in the left corner, and minimum when it is
in the right corner. After some calculations, the range of
rs23 is found as

| rs12 + rs13| − 1 ≤ rs23 ≤ 1− | rs12 − rs13|. (9)

It should be noted that the effect of finiteN is the
quantization of the accessible values. Now, it can be
readily verified that

sin
(π

2
(1− | rs12 − rs13|)

)

=

r12r13 +
√

(

1− r2
12

)(

1− r2
13

)

(10)

and

sin
(π

2
( | rs12 + rs13| − 1)

)

=

r12r13 −
√

(

1− r2
12

)(

1− r2
13

)

. (11)

Therefore,r̂23 = sin
(

π
2
rs23

)

satisfies (7). This, besides
|r̂12| < 1 and|r̂13| < 1 can be used to show that|R̂| ≥ 0
(as in (7)) and the assertion is proved that forp = 3 and
real data, PCC estimate is a valid covariance matrix.

III. C OUNTEREXAMPLES

In this section, some counterexamples are presented to
show that PCC covariance estimate is not guaranteed to
be PSD in dimensionsp > 3 for real signals andp > 2
for complex signals. In real data case withp = 4 and
number of observationsN = 4, the real sign sequences
in Table I results in an invalid covariance estimate. After
simple computations, we will havers12 = rs34 = 0
and rs13 = rs14 = rs23 = rs24 = 0.5. The covariance
estimate will be

R̂1 =









1 0 0.7 0.7
0 1 0.7 0.7
0.7 0.7 1 0
0.7 0.7 0 1









with eigenvalues[−0.4, 1, 1, 2.4 ]. ThenR̂1, with a neg-
ative eigenvalue, is not a valid covariance matrix.

We can augment this example to give a counter-
example for dimensionp = 5. Repeat each sign twice
to have four signals with number of observations2N .
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Note that the covariance matrix does not change. Now,
add a new signal with alternating sign in each sample.
The covariance estimate will be

R̂aug =

[

R̂1 0

0
T 1

]

.

where0 is the4× 1 vector of zeros. As a consequence
of the structure ofR̂aug, eigenvalues ofR̂1 are also
eigenvalues of̂Raug. Therefore,R̂aug is an invalid co-
variance matrix. This procedure can continue to produce
counterexamples for higher dimensions in real data case.

In case of complex signals,p = 3 and N = 2, a
counterexample is given in Table I, where ”−+” denotes
−1 + j. The resulting estimate is

R̂ =





1 0.7− j 0.7 0
0.7 + j 0.7 1 0.7 − j 0.7

0 0.7 + j 0.7 1





with eigenvalues[−0.4, 1, 2.4 ] which makeR̂ an invalid
covariance matrix. Augmentation of the complex signal
set for higher dimensions is similar to the real case,
except that the new added signal alternates between
”++” and ”−−”.

IV. A PPLICATIONS OF THERESULTS

In this section, we discuss the practical usefulness of
the main results of this letter which focuses on low
number of sensors. In the signal processing context,
covariance estimation often arises in the multi-sensor
applications where parameters of interest are functions of
the true data covariance matrix. Although PCC estimate
of the covariance matrix exhibits attractive features such
as robustness and extremely low complexity, it cannot
be guaranteed to be PSD in the applications with large
number of sensors.

Selection of the number of sensors in an application
depends on both nature of the problem and practical
limitations. In theory, more sensors always results in
a better estimate, as proved in many cases such as
direction finding through examination of the Cramer-Rao
bounds [7]. In practice, complexity issues usually limit
the number of sensors. Large arrays are used whenever
performance be of the main importance regardless of
the cost. In such cases as DOA estimation in military
environments (radar and sonar), thousands of sensors
are not uncommon. Nevertheless, most low-cost civil
applications use very few sensors. In the following, we
consider some of these applications.

A. MIMO Communication Systems

Multiple antenna systems are an integral part of the
most new wireless communication systems increasing
user and data capacity (e.g. UMTS/W-CDMA, 802.11n
WLAN, 60 GHz WPAN). Multiple antennas can provide
diversity gain and/or better antenna gain through beam-
forming in base station and/or handset. Beamformers
(e.g. conventional or Capon) usually utilize an estimate
of the array covariance matrix [8], that may be obtained
using PCC as a power-saving estimator. It is well known
that performance improvement due to diversity gain re-
duces as the number of antennas increases. This, besides
space limit on the handset and coupling phenomena have
resulted in the prevalence of MIMO systems with very
few (usually 2 to 4) antennas [9], [10].

B. Blind Source Separation (BSS)

BSS has found numerous potential applications in
the field of audio signal processing [11]. An array of
microphones is used to gather multiple signal mixtures
and diverse methods are used to extract signals from
these observations. A large class of BSS methods use
real-valued inter-sensor covariances with different time
lags to estimate the mixing matrix and desired signals
(e.g. SOBI [12], JADE [13]). This also includes in-
put signals whitening as a preprocessing that converts
the convolutive source separation problem to a simpler
independent component analysis (ICA) problem. This
family of two-step algorithms is known as AMUSE
(Algorithm for MUltiple Source Extraction). PCC, as
a fast correlator, can make real-time operation more
feasible in these methods. For realistic situations where
we have fewer sensors than sources, underdetermined
methods are proposed [14]. Many methods are presented
for the special case of 2 sensors and multiple sources
(e.g. DUET [15], and [16]), and also quite few sensors
are common to many realizations of the methods [12],
[14].

APPENDIX

COMPLEX PCC

Let x, y be two zero-mean, unit-variance, and circu-
larly symmetric complex random variables with indepen-
dent real and imaginary parts. To prove (4), we expand
the expectation as

E{sgnc(x)sgn∗c(y)} = E
{

[sgn(xRyR) + sgn(xIyI)]

+j [ sgn(xIyR)− sgn(xRyI)]
}

. (12)

Furthermore,E{xy∗} = r implies that

E{xRyR + xIyI} = rR

E{xIyR − xRyI} = rI . (13)
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Circular symmetry ofx andy yields

E{xRyR} = E{xIyI} = rR/ 2

E{xIyR} = −E{xRyI} = rI/ 2 (14)

andE{x2R} = E{x2I} = E{y2R} = E{y2I} = 1

2
. Then

the correlation coefficients will be

Cor(xR, yR) = Cor(xI , yI) = rR

Cor(xI , yR) = −Cor(xR, yI) = rI . (15)

Substituting (15) and (1) into (12) gives

E{sgnc(x)sgn∗c(y)} = 4/π [ sin−1(rR) + j sin−1(rI) ] (16)

which implies (4).

REFERENCES

[1] S. J. Devlin, R. Gnanadesikan, and J. R. Kettenring, ”Robust
estimation and outlier detection with correlation coefficients”,
Biometrika, vol. 62, No. 3, pp. 531-545, March 1975.

[2] S. S. Wolff, J. B. Thomas, and T. R. Williams, ”The polarity-
coincidence correlator: a nonparametric detection device”, IRE
Trans. Information Theory, vol. 8, No. 1, pp. 5-9, Jan. 1962.

[3] P. C. Egau, ”Correlation systems in radio astronomy and related
fields”, IEE Proc., vol. 131, Pt. F, No. 1, pp. 32-39, Feb. 1984.

[4] K. J. Gabriel, ”Comparison of three correlation coefficient
estimators for gaussian stationary processes”,IEEE Trans.
Acoustic, Speech, Signal Proc., vol. ASSP-31, No. 4, pp. 1023-
1025, Aug. 1983.

[5] G. Jacovitti and R. Cusani, ”Performance of normalized co-
rrelation estimators for complex processes”,IEEE Trans. Signal
Proc., vol. 40, No. 1, pp. 114-128, Jan. 1992.

[6] S. Visuri, V. Koivunen, and H. Oja, ”Sign and rank covariance
matrices”,J. Stat. Plan. Infer., vol. 91, No. 2, pp. 557-575, Feb.
2000.

[7] P. Stoica and A. Nehorai, ”MUSIC, maximum likelihood and
Cramer-Rao bound”,IEEE Trans. Acoustic Speech Sig. Proc.,
vol 37, No. 5, pp. 720-741, May 1989.

[8] B. D. Van Veen and K. M. Buckley, ”Beamforming: a versatile
approach to spatial filtering”,IEEE ASSP Mag., pp. 4-24, Apr.
1988.

[9] H. T. Hui, ”Practical dual-helical antenna array for diversity-
MIMO receiving antennas on mobile handsets”,IEE Proc.
Microw. Antennas Propag., vol. 152, No. 5, pp. 367-372, Oct.
2005.

[10] D. Browne, M. Manteghi, M. P. Fitz, and Y. Rahmat-samii,
”Experiments with compact antenna arrays for MIMO radio
communications”,IEEE Trans. Ant. Propag., vol. 54, No. 11,
pp. 3239-3259, Nov. 2006.

[11] K. Torkkola, ”Blind separation for audio signals - are we there
yet?”, in Proc. Workshop on Independent Component Analysis
and Blind Signal Separation, Aussois, France, Jan. 11-15, 1999.

[12] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E.
Moulines, ”A blind source separation technique using second-
order statistics”,IEEE Trans. Signal Proc., vol. 45, No. 2, pp.
434-444, Feb. 1997.

[13] J. F. Cardoso, ”High-order contrast for independent component
analysis”, Neural Computation, vol. 11, No. 1, pp. 157-192,
1999.

[14] S. Winter, W. Kellermann, H. Sawada, and S. Makino, ”MAP-
based underdetermined blind source separation of convolutive
mixtures by hierarchical clustering and l1-norm minimization”,
EURASIP J. Advances Signal Proc.,pp. 1-12, 2007.

[15] O. Yilmaz and S. Rickard, ”Blind separation of speech mixtures
via time-frequency masking”,IEEE Trans Signal Proc., vol. 52,
No. 7, pp. 1830-1847, July 2004.

[16] P. Comon, ”Blind identification and source separation in 2× 3

under-determined mixtures”,IEEE Trans. Signal Proc., vol. 52,
No. 1,pp. 11-12, Jan. 2004.


	Introduction and Preliminaries
	Main Result
	Valid Range of Covariance
	PCC Covariance Estimate

	Counterexamples
	Applications of the Results
	MIMO Communication Systems
	Blind Source Separation (BSS)

	Appendix: Complex PCC
	References

