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A Generalized Sampling Method for
Finite-Rate-of-Innovation-Signal Reconstruction
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Abstract—The problem of sampling signals that are not admis-
sible within the classical Shannon framework has received much
attention in the recent past. Typically, these signals have a para-
metric representation with a finite number of degrees of freedom
per time unit. It was shown that, by choosing suitable sampling
kernels, the parameters can be computed by employing high-res-
olution spectral estimation techniques. In this letter, we propose
a simple acquisition and reconstruction method within the frame-
work of multichannel sampling. In the proposed approach, an in-
finite stream of nonuniformly-spaced Dirac impulses can be sam-
pled and accurately reconstructed provided that there is at most
one Dirac impulse per sampling period. The reconstruction algo-
rithm has a low computational complexity, and the parameters are
computed on the fly. The processing delay is minimal—just the
sampling period. We propose sampling circuits using inexpensive
passive devices such as resistors and capacitors. We also show how
the approach can be extended to sample piecewise-constant signals
with a minimal change in the system configuration. We provide
some simulation results to confirm the theoretical findings.

Index Terms—Exponential splines, finite rate of innovation, gen-
eralized sampling, localizing filter, piecewise-constant functions,
streams of Dirac impulses.

I. INTRODUCTION

ECENTLY, there has been a lot of interest in sampling
R and reconstructing signals that cannot be handled within
the classical framework of Shannon’s sampling theory. Exam-
ples of such signals include streams of Dirac impulses, and
various types of nonuniform splines such as piecewise-poly-
nomial, piecewise-exponential, and piecewise-harmonic func-
tions. These signals are uniquely specified by a discrete set of
parameters (for example, the amplitudes and positions of the
singularities) and are said to possess a finite rate of innovation
(FRI) [1]. Potential applications of FRI sampling are in high-rate
distributed analog-to-digital conversion, image processing, dig-
ital processing of neuronal signals, bioimaging, analysis of sto-
chastic point-processes, ultrawideband communication, etc.
The notion of FRI sampling was first introduced by Vetterli
et al. [1]. They formulated the reconstruction problem as one of
parameter estimation and established a link to the annihilating
filter approach, which forms the main ingredient of many
super-resolution spectral estimation techniques. In fact, the
FRI problem involving a periodic stream of Dirac impulses
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addressed in [1] is exactly the dual of the classical harmonic-re-
trieval problem discussed in [2]. Vetterli et al. considered two
types of kernels: 1) infinitely-supported functions such as the
Gaussian and the sinc; and 2) compactly-supported ones such
as B-splines [3], which overcome certain drawbacks of the first
type and give rise to stable estimation techniques. Dragotti et
al. [4] introduced spline-based algorithms for recovering FRI
signals from their moments. Thereby, they showed that the
classical annihilating filter approach can be extended to solve
equations involving power-sum series.

The inspiration for the present work lies in the notion of gen-
eralized or multichannel sampling first proposed by Papoulis
in the context of bandlimited signals [5]. Subsequently, Unser
and Zerubia extended the theory to the class of square-in-
tegrable functions and performed optimal reconstruction in
shift-invariant spaces [6]. The development of multichannel
approaches for FRI signals has been initiated only recently [7],
[8]. Kusuma and Goyal proposed new sampling approaches
using a bank of integrators and B-splines. Their scheme has a
successive approximation property, which is useful for recon-
structing an unknown number of impulses over a finite interval
of time and for detecting suboptimal modeling [7]. Baboulaz
and Dragotti employed a distributed setup for acquiring FRI
signals and demonstrated applications to image registration
based on continuous image moments. These results were then
used for performing super-resolution image restoration within
the framework of Wiener filtering [8].

In this letter, we propose a simple two-channel method for
sampling FRI signals. We first focus on sampling a stream of
Dirac impulses for it is the canonical FRI signal. We maintain
the same overall sampling rate as the standard approaches and
propose a low-complexity reconstruction technique. We then
show how the approach can be extended to sample piecewise-
constant functions. We provide some simulation results to sup-
port the theoretical analysis. In our analysis, we assume that the
measurements are noise-free.

II. FROM DIRAC IMPULSES TO KRONECKER IMPULSES

Consider the impulse train
L

o(t) = arbp(t—te) (1)
=1

where dp(-) denotes the Dirac impulse. The impulses are
assumed to follow a natural time-ordering; i.e., 1 < o <
-+ < tr_1 < tr. The objective is to compute the parameters
{ag,te;te € Ryap € C;1 < £ < L} based on some measure-
ments of x(¢).

Impulses are best characterized in a distributional framework,
and their properties are revealed through their action on a set of
analysis functions. From a signal-processing perspective, linear
shift-invariant systems can be viewed as operators that generate
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Fig. 1. First-order resistor-capacitor network in lowpass configuration. The
system parameter « is the reciprocal of the time-constant.
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Fig. 2. From Dirac impulses to Kronecker impulses. The subplots (a)—(d) cor-
respond to (1)—(4), respectively. The zoomed plot in (d) illustrates the upward-
rounding effect.

analysis functions and are specified by their impulse responses.
The most commonly encountered practical systems are charac-
terized by linear differential equations or rational transfer func-
tions. Let us consider the passive first-order resistor-capacitor
(RC) network in lowpass configuration [cf. Fig. 1] specified
by the impulse response h,(t) = ae~“tu(t), where u(t) is
the unit-step function. When excited with x(¢) given in (1), the
system would yield the following response:

L
Ya(t) = (% he)(t) = Z age Tyt — 1) ()
=1

where the convolution must be understood in the sense of dis-
tributions. In Fig. 2(a) and (b), we show examples of z(¢) and
Yo (t), respectively. If y, (¢) is sampled every T seconds, it gives
rise to the discrete-time sequence [cf. Fig. 2(c)]

L
Ya(nT) = « Z ale‘“("T_“)u(nT —t),neZ. (3
=1

Next, consider a  discrete-time finite-impulse-re-
sponse filter specified by the Z-transform: G,(z) =
(1/a) (1 —eT27T). Note that G,(z) is the convolu-
tional-inverse of the discrete-time exponential o e~ " Ty (nT).
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Fig.3. Two-channel sampling of a stream of Dirac impulses by using first-order
RC networks. The parameter computation is given in (6)—(9).

Therefore, when the sequence in (3) is processed by G, (2), it
gives rise to a stream of Kronecker impulses [cf. Fig. 2(d)] as
shown in the following:

L
Pa(nT) = age™ " T (u(nT —ty) —u((n—1)T —t,))
(=
Ll
= 3w TR s ()] 0
(=1

where 6k [-] denotes the Kronecker impulse and r(t;) =
[te/T7], with [-] indicating the ceiling operation. The positions
of the Kronecker impulses are equal to the positions of the
Dirac impulses rounded upwards to lie on the sampling grid.
The amplitude of the Kronecker impulse carries information
about the position as well as the amplitude of the corresponding
Dirac impulse in a separable fashion. From Fig. 2(d), it is
clear that the upward-rounding operation places a limit on
resolvability; i.e., Dirac impulses that are closer apart than 7T’
give rise to overlapping Kronecker impulses and hence cannot
be resolved directly. This issue does not arise if there is at most
one Dirac impulse in a sampling interval; i.e., if

ZISIlilélL{tg —ti—1} > T. 5)

Note that the above condition is similar to the one stated in
[1] for sampling bilevel signals by employing a linear B-spline
kernel. In some cases, the underlying mechanics of signal gener-
ation places a lower limit on the spacing between two consecu-
tive events, and may even be available a priori, thereby enabling
an appropriate choice of 7.

III. TWO-CHANNEL SAMPLING OF A DIRAC IMPULSE TRAIN

In the foregoing analysis, we have seen that the amplitudes
of the Kronecker impulses are separable functions of the ampli-
tudes and positions of the Dirac impulses. This property gives
rise to a simple and efficient reconstruction technique as we shall
show next. To proceed further, we consider another set of mea-
surements obtained by employing a different sampling kernel.
In principle, the second set of acquisitions may be made by using
a totally different filter; in the present development, we use a
similar RC network as shown in Fig. 1, but with a different pa-
rameter v [cf. Fig. 3]. We shall soon see the advantages this
choice of filters has to offer.

Corresponding to the network with parameter v, we have the
sequence p~(nT'), which is obtained from (4) by replacing «
with «y. The /th nonzero values in p, (n7T') and p.,(nT) occur at
the time instant r(¢,)T = [t¢/T] T, just after the ¢th Dirac
impulse has excited the respective analog systems. From the
nonzero values, we compute two new quantities as follows:
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Gall] =po (r(t)T) e T = ae®*, and ~ (6)
Gy [0] = poy (r(t)T) 77T = et @)

Solving (6) and (7) for t; and as, we get that

te= 1n(qa[£]>,and 8)

a—7y \gl]

oo () o

Equations (6)—(9) thus constitute a closed-form solution for the
nonlinear problem of computing the parameters of x(¢). The
delay after the /th impulse has excited the systems and before
{ae,te} can be computed is T. The reconstruction technique
operates locally; therefore, it can be applied to an infinitely long
impulse train. The special case where an impulse is located on
the sampling grid, i.e., when ¢, is an integer multiple of 7', is
indicated by the unique condition: p, (r(t¢)T) = p(r(te)T) =
0¢/2 pa(r(te)T +T) = (ae/2)e=> T, and po (r(te) T+ T) =
(ag/2)e=7T. In this case, we have that t; = r(t;)7 and a; =
2pa(r(te)T).

We summarize our results in the form of a proposition.

Proposition 1: The stream of Dirac impulses z(t) =
> vez @eOp(t — t¢) is uniquely specified by the samples
Ya(nT) = (x * he)(nT) and y(nT) = (z * h,)(nT), n € Z,
where hq(t) = ae *tu(t), hy(t) = ye 7tu(t), and o # 7,
provided that there is at most one impulse in each sampling
interval.

IV. SPLINE EQUIVALENCE

The causal exponential ave™*"u(t) and the filter G, (z) =
(1/a)(1 — e=*T2=T) are sufficient indicators to hint that
the foregoing analysis can be recast within the framework of
splines, in particular cardinal E-splines [9], which are of the
exponential variety. The filter G, (z) is immediately identified
as the exponential-localizing filter. Note that p,(nT') given in
(4) is the weighted finite difference

pa(nT) = (ya(nT) = e * T ya((n = 1)T)) /o
= (2 % fa)(nT)

where B,(t) = (1/a)(ha(t) — e=*Thy(t — T)) is the first-
order E-spline [9] with parameter «, at scale T'. Similarly, it
can be shown that p.,(nT) = (x * §)(nT'). Thus, the process
of filtering, sampling, and localizing described in Section II is
equivalent to sampling with an E-spline kernel.

If the E-splines are scaled versions of one another, then we
have reconstruction from measurements taken at two scales.
An interesting scenario occurs when one of the E-splines is re-
placed by a causal polynomial B-spline of order zero; i.e., ei-
ther « = 0 or v = 0. The B-spline channel output would then
straightaway give the amplitudes of the Dirac impulses. The po-
sitions of the impulses can be computed from the samples of the
E-spline channel. Thus, we can have a hybrid spline-based sam-
pling system, which further simplifies the calculations.

(10)

V. TwO-CHANNEL SAMPLING OF
PIECEWISE-CONSTANT SIGNALS

We next show that, by an appropriate choice of the sampling
circuit, one can sample and reconstruct piecewise-constant sig-
nals. Consider the function

L
g(t) = befu(t —t) —u(t — t,_1)], fort >0 (11)
(=1

and zero elsewhere; tg = O and {t;; £ =1,2,...,L},0< t; <
to < --- < tr,are the instants at which ¢(¢) has discontinuities.
Consider the distributional derivative of g(t) given by

dg(t)

dt

L

ayp §D(t — tg)
=1

where ap = by — by_1, for £ = 1,2,...,L, and by = 0.
The signal in (12) is identical to that in (1), and therefore,
the parameters {as,t¢} can be computed by employing the
method described in Sections II and III. The amplitudes
{be;¢ = 1,2,...,L} can then be computed recursively as
be = bg—1 + a, together with the initial condition by = 0.

The sampling scheme proposed above can be implemented
by employing RC networks arranged in highpass configuration;
i.e., the output voltage is measured across the resistor instead of
measuring across the capacitor. This claim can be easily veri-
fied by working in the Fourier domain. Consider the following
factorization of the frequency response of the RC highpass net-
work:

12)

1
jw+a

P (@) = jw (13)
The jw factor corresponds to the ideal differentiator and
(1/(jw + «)) is the frequency response of the RC lowpass
network (up to the scale factor «) used in Section II. Thus, it
turns out that the first-order RC network can be used to filter
streams of Dirac impulses as well as piecewise-constant signals
depending on whether it is configured as lowpass or highpass,
respectively.

VI. SIMULATIONS

To support our theoretical findings, we report some simula-
tion results. Consider a stream of six Dirac impulses with ran-
domly chosen amplitudes and positions such that in each sam-
pling interval (1" = 0.005 s), there is at most one impulse [cf.
Fig. 4(a)]. The impulses are analyzed by using two RC networks
with parameters & = 3 and y = 2.1. These values are chosen for
the sake of illustration. The reconstructed impulses are shown
in Fig. 4(b). The reconstruction is exact to numerical precision.
Similar results were obtained for other choices of o and . Next,
consider the piecewise-constant signal shown in Fig. 4(c), where
the transition points are farther apart than 7" and where the am-
plitudes are assigned randomly. The sampling setup is the same
as the one described above. The reconstructed signal is shown in
Fig. 4(d); in this case also, accurate reconstruction is achieved.

VII. CONCLUSIONS

We have addressed the canonical problem of sampling and
reconstructing a stream of Dirac impulses. We have proposed a
two-channel sampling approach to retrieve the parameters of the
impulses using simple computations. In principle, the technique
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Fig. 4. (a) Stream of six Dirac impulses (ground truth) and (b) Reconstruction;
(c) Piecewise-constant signal (ground truth) and (d) Reconstruction.

TABLE I
COMPARISON OF THE STANDARD AND THE PROPOSED APPROACHES

Feature

Standard approaches

Proposed method

Prior knowledge of
number of impulses

Maximum number of
impulses

None

Inter-impulse spacing

No constraint

Must be greater than 7

Super-resolution

Yes

Yes, but only if (5) is
satisfied

Hardware complexity

Specific kernel; single
sampling circuit

Simple RC networks;
two sampling circuits
(each operating at half
the total sampling rate)

Estimation algorithm

Sophisticated

Straightforward

Processing

Block-wise (large de-
lay)

Online (small delay)

Local rate of innova-
tion (I")

2
Popsr < =3 S'is
the support of the B-
spline sampling ker-
nel; S > 2 (cf. The-

2
FQLST S —; Choice

of kernel dependent on
the rate of innovation
(cf. (5) and (10))

orem 2, [4]); 2LST is
the size of the interval

is applicable to an infinitely long impulse train, without having
to process it block-wise. A comparison of the salient features
of the proposed method with the standard FRI approaches [1],
[4] is given in Table 1. The overall sampling rate in the two
approaches is the same. The proposed method has a number of
advantageous features, but it has the fundamental limitation that
it cannot resolve impulses that are closer apart than 7', which is
not the case for the previously published techniques [1], [4].
We would like to emphasize that the filtering interpretation
employing RC networks does not restrict the analysis to positive
« and y. One could, for instance, also choose complex exponen-
tials such as the causal Fourier bases (imaginary «, vy; appro-
priately chosen), or their exponentially-damped versions (com-
plex-valued «, ). In this letter, we have presented a proof of
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concept and some generalizations are possible—multiple chan-
nels, higher-order sampling kernels, etc., which are perhaps de-
sirable in the presence of noise. A generalization to second-
order E-spline sampling kernels is given in the Appendix .

We have also demonstrated the applicability of the proposed
sampling method to piecewise-constant signals. Further exten-
sions to piecewise-polynomial signals or nonuniform splines
can be done by following the ideas proposed in [4]. In principle,
one may also derive robust subspace-type techniques within the
framework of multichannel sampling—we believe that this is a
research topic in its own right.

APPENDIX

Consider sampling «(¢) in (1) with two second-order
E-spline kernels (5(t) and (5(t), where & = {aj, 2} and
57 = {v1,72}, both at scale T. Assume that the kernels differ
in at least one of the parameters. If two consecutive impulses
are farther apart than 27 (the support of the kernels), and the
sampling period is 27, then, corresponding to each impulse, we
have a nonzero sample in each channel. For example, consider
the following samples corresponding to the /th impulse:

qall] = a¢ ca (e_o‘2 Ar_ g
qry[g] =apc, (6—72 Ar _ o™ Ac)

and (14)

15)

—a Ap)

where Ay = 7(t))T — tg, ca = 1/(1 —2), and ¢, =
1/(y1 — 72). Dividing (14) by (15) and rearranging gives an
equation in terms of ¢y, which can be solved for in closed-form
only for specific values of the parameters of the E-splines. For
example, if we choose a1 = 0,0 = 2,71 = 1, and v = 2, we
get a quadratic equation in e, the positive root of which then
corresponds to the solution of ¢,. In the general case, iterative
solvers may be required. Substituting the value of £, thus com-
puted in either (14) or (15) yields ay in a straightforward fashion.
Thus, the procedure can also be extended to second-order ker-
nels. The main advantage of working with first-order kernels,
however, is the simplicity of the reconstruction technique.
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