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Abstract— Recently, a single-symbol decodable transmit 

strategy based on pre-processing at the transmitter has been 

introduced to decouple the Quasi-Orthogonal Space-time Block 

Codes (QOSTBC) with reduced complexity at the receiver [9]. 

Unfortunately, it does not achieve full diversity, thus suffers 

from significant performance loss.  To tackle this problem, we 

propose a full diversity scheme with four transmit antennas in 

this letter. The proposed code is based on a class of restricted 

full-rank single-symbol decodable design (RFSDD) and has 

many similar characteristics to the Coordinate Interleaved 

Orthogonal Designs (CIODs), but has a lower peak-to-average 

ratio (PAR) .  

Keywords- restricted full-rank single-symbol decodable 

design, coordinate interleaved orthogonal designs, full diversity, 

quasi-orthogonal space-time block code 

I.  INTRODUCTION 

The Space-Time Block codes (STBCs) obtained from 

orthogonal designs (ODs) [1,2] provide a promising 

transmission scheme in multi-antenna systems due to their 

full diversity and single-symbol decodability (symbol-by-

symbol decoding). However, it is proved in [2] that their 

symbol rates are upper bounded by 3/4 when complex signal 

constellations and more than two transmit antennas are used. 

To increase the rate while preserving the full diversity, two 

classes of single-symbol decodable (SSD) STBCs have been 

proposed: (i) Coordinate Interleaved Orthogonal Designs 

(CIODs) [3] and (ii) Minimum-Decoding-Complexity (MDC) 

STBCs from Quasi-ODs (QODs) [4,5]. Recently, as an 

extension to ODs and CIODs that allow single-symbol-

decoding, B. Sundar Rajan, et al., proposed a so-called 

unrestricted full-rank single-symbol decodable design 

(UFSDD) and restricted full-rank single-symbol decodable 

design (RFSDD), respectively, in [6]. However, to the best 

of our knowledge, the CIODs or generalized CIODS 

(GCIODs) [6] are the only codes that were found satisfying 

restricted FSDD (RFSDD). In this letter, we obtain a new 

class of RFSDD other than CIODs or GCIODs. 

Let us consider a 
tT N  (we assume

tT N ) linear STBCs 

given by 
1
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where
k kI kQs s js  , 0,..., 1k K  , are the K  complex 

variables with
kIs  and 

kQs  denoting, respectively, the real and 

imaginary part of 
ks  and 1j   . 

tN denotes the number of 

transmit antennas, and T  is the number of time slots for one 

codeword.   
2 1

0

K

k k




A is a set of 

tT N  complex matrices called 

weight (dispersion) matrices of C .  

The following important conditions were introduced in [6] 

to classify single-symbol decodable STBCs: 

0H H
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 ( )H

k k tRank NA A , 0 1k K                          (4) 

where ( )H  stands for the complex conjugate transpose of 

matrix ( ) , and expression (4) specifies H

k kA A as a full-rank 

matrix for all k . A linear STBC is UFSDD if and only if all 

three conditions (2), (3) and (4) are satisfied.  On the other 

hand, a linear STBC is RFSDD if and only if the following 

three conditions are satisfied: 

i) The weight matrices satisfy conditions (2) and (3), 

but not satisfying (4); 

ii) 
2 2 2 1 2 1

H H

k k k k A A A A  is full-rank for all 

0 1k K   .  

iii)  The coordinate product distance (CPD) [6] of the 

signal set A is nonzero. 

The single-symbol decodable STBCs presented in [4,5,7, 8] 

satisfy (2) and (4), but not (3). Thus, they are a new class of 

codes which differ from UFSDD and RFSDD. 

    By utilizing the fact that the eigenvectors of the equivalent 

channel are fixed and independent from the channel 

realizations, a single-symbol decodable transmit strategy 

based on pre-processing has been proposed in [9,10] for the 

quasi-orthogonal space-time block codes (QOSTBC). For 

convenience, we call this scheme SSD
[9]

. However,  the 

performance loss of SSD
[9]

 is significant as it does not 

achieve the full diversity order. In this letter, we derive a 

generic algebraic structure for systems with 4tN   in order to 

gain a further insight into SSD
[9]

, and we discovered that the 

scheme SSD
[9]

 actually satisfies condition i). In light of this 

finding, we propose a full diversity design scheme for SSD
[9]

 

in accordance with the condition ii) and iii), thus the 

performance is improved greatly in comparison to SSD
[9]

. It 

is a class of new RFSDD code as all conditions of RFSDD 

are satisfied. The proposed code shares many characteristics 

with CIOD but has a lower peak-to-average ratio (PAR) 

which is the major advantage of the proposed code over 

CIOD.  

    The remaining of this letter is organized as follows. In 

section II, we give the system model and a brief introduction 

to SSD
[9]

. The new RFSDD code is proposed in section III. 

The algebraic structure and coding gain of the proposed code 
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are also analyzed in this section. Numerical results are 

presented in Section IV to demonstrate the effectiveness of 

the proposed codes. Finally, the conclusions are drawn in 

section V. 

II. SYSTEM  MODEL 

We consider a MIMO system with 4tN T   and 
rN  

receive antennas. The system model is given by 

 Y CH N ,                                  (5) 

where 
,[ ]

rt q T Ny Y  is the received signal matrix whose entry 

,t qy  is the signal received at antenna q  at time t , where 

1,2,...,t T , and 1,2,..., rq N ; 
,[ ]

rt q T Nn N  is the noise matrix; 

,[ ]
tt p T Nc C  is the transmitted signal matrix whose entry 

,t pc  

is the signal transmitted at antenna p  and at time t , where 

1,2,...,t T , and 1,2,..., tp N . 
,[ ]

t rp q N Nh H  is the channel 

matrix whose entry 
,p qh  is the channel coefficient from 

transmit antenna p  to receive antenna q . The entries of the 

matrices H and N  are mutually independent, zero-mean, and 

complex Gaussian random variables. 
,p qh  has unit variance 

and 
,t qn  has  variance /tN  , where   is the signal-to-noise 

ratio (SNR) per receive antenna. The channel is assumed to 
be flat fading and remains constant for a block of T  symbols 
and changes independently from block to block. It is further 
assumed that the transmitter has no channel state information 
(CSI) and the receiver has perfect CSI. 

    In the following, we focus on the 4 4  Quasi-Orthogonal 
Space-Time Block Codes (QOSTBCs) [11] and brief review 
the single-symbol decodable transmit strategy proposed in [9]. 
The codeword is given by 
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C   ,                      (6) 

which is a function of the vector 
1 2 3 4[ ]Tx x x xx . After 

rearranging and complex-conjugating some rows of Y , (5) 
can be reformed as 

' = ' + 'y H x n ,                               (7) 

where 
1 2[( ) ,( ) ,...,( ) ]

r

T T T T

Ny' y y y , 
1 2' [( ) ,( ) ,...,( ) ]

r

T T T T

NH H H H , 

and 
1 2[( ) ,( ) ,...,( ) ]

r

T T T T

Nn' n n n ; 

1, 2, 3, 4,[ ]T

q q q q qn n n n n , 1,2,..., rq N . ( )T  denotes the 

transpose of matrix ( ) , and ( )  denotes the conjugate of a 

complex scalar. 
qy ,

qH are given respectively as 

1, 2, 3, 4,[ ]T

q q q q qy y y y y ，

1, 2, 3, 4,

2, 1, 4, 3,

3, 4, 1, 2,

4, 3, 2, 1,

q q q q

q q q q

q

q q q q

q q q q

h h h h

h h h h

h h h h

h h h h
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H . 

We get the equivalent channel matrix ' 'H
H H  as 

1 2
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2 1
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H

j

j

j

j
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H H ,                (8) 

where 
1  and 

2  are defined as 

2
4

1 ,

1 1

rN

p q

q p

h
 

 ; 
2 1, 3, 4, 2,

1

2 ( )
rN

q q q q

q

Im h h h h  



  .     (9) 

We use the ( )Re   and ( )Im   to denote the real and imaginary 

parts of a complex scalar, respectively.  

The symmetric matrix in (8) has the following singular 
value decomposition (SVD) as 

' 'H HH H VDDV ,                           (10) 

where 

1 0 1 0

0 1 0 11

0 02

0 0

j j

j j

 
 
 
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 

  

V  and 

1 2 1 2 1 2 1 2([ ])diag            D . 

An important characteristic is that the matrix V  is a 

constant unitary matrix for arbitrary channel realizations. If 
we choose V  as a pre-processing matrix in the transmitter, 

the vector x  in (7) can be rewritten as 

x Vs ,                                      (11) 

where 
1 2 3 4[ ]Ts s s ss , and 

1 2 3 4, , ,s s s s A , A  is a complex 

signal set with unit average power. Combining expressions 
(7), (10) and (11) results in a completely decoupled model as 
follows 

1'' ' 'H H  y Ds w D V H y ,                         (12) 

Where w is the noise vector, whose entries are mutually i.i.d. 

complex Gaussian random variables with zero-mean and iden
tical variance. 

III. PROPOSED  RFSDD  CODE 

A single-symbol decodable transmit strategy SSD has 

been derived in [9] based on the completely decoupled 

model expressed by (12). Unfortunately, SSD
[9]

 does not 

achieve the full diversity provided by the MIMO channel, 

which will be proven below. 

 

 A.    Analysis of SSD
[9]

 

Substituting (11) into (6) and combining with (1), we get 

the weight matrices of SSD
[9]

 with 4K   as follows:  
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It is easy to verify that all the weight matrices satisfy 

condition i) but not conditions ii) and iii), so that only partial 

diversity can be obtained no matter how we design CPD. 

Next, we present a re-grouping scheme to make the code 

satisfying condition ii). 

 

B.    Re-grouping scheme to satisfy condition ii) 

We group all the weight matrices 
0A , 

1A , 
2A , 

3A , 
4A , 

5A , 
6A , 

7A  into 4K   groups as follows:  ,k p qg  A A , 

where 0,1,2,3k   and , 0,1,...,7p q  , p q . The 
pA  and 

qA  in 

kg  are the coefficient matrices of 
kIs and 

kqs , respectively, 

where 
kI kQs js A , 0,1,2,3k  . For example, the expression 

(1) shows that the groups are  0 0 1,g  A A ,  1 2 3,g  A A , 

 2 4 5,g  A A ,  3 6 7,g  A A .   

Another interpretation of condition ii) is that for any group 

 ,k p qg  A A , 0,1,2,3k   and , 0,1,...,7p q  , p q , it is 

necessary for the matrix H H

p p q qA A A A  to have full-rank. 

Next, we will re-group the weight matrices to derive a new 

code that satisfies condition ii). 

    After examining all possible groups for weight matrices, 

we obtain 

1 2

1 2 2 1

2, , ,
( )

4, , ,

H H

p p q q

p q N or p q N
Rank

p N q N or p N q N

    
  

      
A A A A

where  1 0,1,2,3N   and  2 4,5,6,7N  .  In Table 1, 

we denote “ Δ ” as the two weight matrices that satisfy (15).  

Table 1:  Groups of weight matrices 

 0A  
1A  

2A  
3A  

4A  
5A  

6A  
7A  

0A      Δ  Δ  Δ  Δ  

1A      Δ  Δ  Δ  Δ  

2A      Δ  Δ  Δ  Δ  

3A      Δ  Δ  Δ  Δ  

4A  Δ  Δ  Δ  Δ      

5A  Δ  Δ  Δ  Δ      

6A  Δ  Δ  Δ  Δ      

7A  Δ  Δ  Δ  Δ      

It is noteworthy that there are many grouping patterns to 

satisfy condition ii). As an example, we choose  0 7 0,g  A A , 

 1 5 2,g  A A ,  2 3 4,g  A A ,  3 1 6,g  A A  shown as “ Δ ” in 

Table 1.  The new code is obtained as  

0 7 0 0 1 5 1 2 2 3 2 4 3 1 3 6' I Q I Q I Q I Qs s s s s s s s       C A A A A A A A A  (16) 

It is easy to prove that the re-grouping has no effect on 

condition i). Combining (13) and (16), the code can be 

rewritten as (17) at the top of next page, which is an 

interleaved version of SSD
[9] 

and satisfies both condition i) 

and ii). 

 

C.    Optimal constellation design 

Condition iii) can always be satisfied by rotating a given 

signal set A . In order to design an optimal rotation angle to 

maximize the coding gain, we first derive the determinant 

expression for the codeword distance matrix, from which the 

coding gain can be completely determined. Based on the 

codeword definition in (16), we let 

0 1 2 3' '( , , , )s s s sC C   and 
0 1 2 3' '( , , , )s s s s

    

C C  , 

' ' 0


  ΔC C C . Combining (13) and (16), we obtain 
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Q Q I I
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ΔC ΔC
         (18) 

where 
kI kI kIs s s



    , 
kQ kQ kQs s s



   , 
k kI kQs s js  , 

k kI kQs s j s
  

  ， and at least one 
ks  differs from 

ks


, 0,1,2,3k  .  

To obtain the minimum of determinant expression in (18), 

without loss of generality, we assume 
k ks s



  only for 0k  . 

Then (18) can be rewritten as 
2 2 2

0 0det( ) (4 )H

I Qs s  ΔC ΔC .                 (19) 

   Consequently, maximization of the coding gain is 

equivalent to maximization of the CPD of signal set A , 

which is similar to CIODs. The optimal angle of rotation for 

CIODs with all different constellations is directly applicable 

to the code in (17). As an example, the optimal angle of 

rotation for square QAM is arctan(2) / 2 31.7175opt   . 

Considering the CIOD shown in (85) of [6], we can derive 

its determinant expression for codeword distance matrix as 
2 2 2 2

0 1 2 3

2 2 2 2 2

0 1 2 3

det( ) (( )

( ))

H

I I Q Q

Q Q I I

s s s s

s s s s

       

       

ΔC ΔC
           (20) 

which differs from (18) only in one coefficient. However the 

energy in (20) is double of that in (18) because only half of 

transmit antennas are utilized for CIOD. Therefore, the 

proposed code has the same coding gain as CIOD.  

 

D. ML Decoding 

It can be shown that the ML decoding metric can be 

calculate as the sum 
0 0 1 1 2 2 3 3( ) ( ) ( ) ( )f s f s f s f s   , where  

2 2

0 0 3 2 0 0 1 0( ) ( '' ) ( '' )Q I I Qf s y d s y d s   

2 2
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2 2
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2 2

3 3 0 1 3 3 2 3( ) ( '' ) ( '' )Q I I Qf s y d s y d s     ,                (21) 

where 
1 1 2d    ,

2 1 2d    ,  and 

0 1 2 3 0 1 2 3

( '')
[ '' '' '' '' '' '' '' '' ]

( '')
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I I I I Q Q Q Q

Re y
y y y y y y y y

Im y

 
 

 
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(15) 
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3 1 0 2 2 0 1 3 0 2 3 1 1

1
'

2

Q Q I I Q Q I I I I Q Q I I Q Q

Q Q I I Q Q I I I I Q Q I I Q Q

I I Q Q I I Q Q Q Q I I Q

s s js js s s js js s s js js s s js js

s s js js s s js js s s js js s s js js

s s js js s s js js s s js js s

            
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C

3 2 0

2 0 1 3 3 1 0 2 1 3 2 0 0 2 3 1

Q I I

I I Q Q I I Q Q Q Q I I Q Q I I
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                 (17) 

IV. NUMERICAL  RESULTS 

The simulation results are presented in this section for 
different codes with four transmit antennas. All the codes 
employ QPSK constellation. The rotation angle is set to 

31.7175  for both CIOD and the proposed code. The bit-

error-rate (BER) performance for SSD
[9]

, CIOD, and the 
proposed code are shown in Fig. 1. It is observed that the 
proposed design improve the performance of the original 
SSD

[9]
 significantly (about 5dB performance gain can be 

obtained at BER=10
-4

 with one receive antenna). The 
proposed RFSDD code has identical performance to 
CIOD. Similar observations hold for the case with two 
receive antennas. 
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Fig. 1   Simulation results of SSD
[9]

, CIOD, and proposed 
code for four transmit antennas 

V. CONCLUSION 

The proposed code in this letter is a full diversity version of 

SSD
[9]

. It is a new RFSDD and its coding gain and optimal 

angle of constellation rotation are the same as CIOD. 

Simulation results show that the proposed code has a more 

rapid BER slope than SSD
[9]

 and achieve the identical 

performance to CIOD. However, the proposed code has more 

dispersive power and lower peak-to-average ratio (PAR) than 

CIOD since half of the antennas are idle [6] in the latter case. 
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