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Near-Optimum Multiuser Detectors Using
Soft-Output Ant-Colony-Optimization

for the DS-CDMA Uplink
Chong Xu, Rob G. Maunder, Lie-Liang Yang, and Lajos Hanzo

Abstract—In this contribution, a novel soft-output ant colony op-
timization (SO-ACO)-based multiuser detector (MUD)—namely
the MUlti-input-Approximation (MUA) assisted SO-ACO-based
MUD—is proposed for the synchronous direct-sequence code-di-
vision-multiple-access (DS-CDMA) uplink (UL). The previously
proposed conventional ACO based MUDs were unable to provide
soft log-likelihood ratio (LLR) values for the channel decoder.
Hence, to solve this open problem, we commence by proposing the
MAximum-Approximation (MAA) assisted SO-ACO algorithm,
leading to a novel MUA assisted SO-ACO algorithm, which sub-
sumes the MAA algorithm as a particular case and outperforms
the MAA algorithm. More explicitly, at a signal-to-noise ratio
(SNR) of 13 dB, the BER performance of the convolutional coding
(CC) aided CDMA UL employing the MAA SO-ACO is improved
from � � ��

� to � � ��
� by employing the MUA SO-ACO.

Our numerical results also demonstrate that the MUA assisted SO
ACO-MUD is capable of approaching the optimum performance
of the Bayesian detector, when � �� UL users are supported
with the aid of 31-chip Gold codes, while the complexity of the
former is a fraction of �� � lower than that of the latter.

Index Terms—Ant-colony optimization, DS-CDMA, low-com-
plexity near-maximum-likelihood detection, uplink detection.

I. INTRODUCTION

A NT colony optimization (ACO) was first invoked by
Colorni et al. [1] in 1991 and has recently been ap-

plied to near-maximum likelihood (ML) multiuser detection
(MUD) aided multiple access (MA) systems [2]–[5]. The
ACO-based MUDs [2]–[5] are reported to be able to achieve
a lower BER as well as a lower complexity than the genetic
algorithm (GA)-based MUDs of [6]. However, most of the
ACO-based MUD schemes found in the open literature at the
time of writing are only capable of providing hard-decision
outputs for the channel decoder. Against this background, an
MAximum-Approximation (MAA) aided SO-ACO algorithm
has been proposed in [7]. In this contribution, we develop this
solution further to the MUlti-input Approximation (MUA) algo-
rithm, which subsumes the above-mentioned MAA algorithm
as a special case, associated with a single input. Our simulation
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Fig. 1. Schematic of the soft-output ACO assisted DS-CDMA UL transceiver,
where � users are supported.

results will demonstrate that increasing the number of inputs
provided for the MUA algorithm has significantly improved
the achievable BER performance compared to that of the MAA
SO-ACO algorithm, approaching the single-user performance,
at a fraction of the Bayesian detector’s complexity.

The rest of this letter is organized as follows. The model of
the SO ACO assisted DS-CDMA UL system will be character-
ized in Section II. In Section III, our new SO ACO-MUD algo-
rithms are detailed and their complexity is characterized. Our
simulation results will be provided in Section IV. Finally, we
will conclude our discourse in Section V.

II. SYSTEM DESCRIPTION

Fig. 1 shows the DS-CDMA UL system model, where each
of the mobile station (MS) transmitters and the base station
(BS) receiver employ a single transmit and receive antenna.
The th user’s -bit data sequence
is firstly channel encoded with a convolutional code (CC)
at a rate of , yielding the coded sequence

. After being interleaved by the random
bit interleaver of Fig. 1, each bit of the sequence is then
spread employing a user-specific -chip DS spreading
sequence waveform . Then, the DS-spread signal is bi-
nary-phase-shift-keying (BPSK) modulated and transmitted
over a single-path flat Rayleigh fading channel , which is
assumed to be constant over a symbol duration. Thus, during
a symbol interval, the base-band equivalent received signal
vector corresponding to the signals received during the
chip intervals can be expressed as , where the
base-band equivalent received signal vector , the CHannel
Transfer Function (CHTF) matrix , the base-band equivalent
transmitted signal vector containing a single element for
each of the users, the AWGN vector , and the Gold-code
matrix are defined as follows: ,

, ,
, and where

, for all the . Note

1070-9908/$25.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on February 16, 2009 at 07:30 from IEEE Xplore.  Restrictions apply.



138 IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 2, FEBRUARY 2009

that the elements in are realizations of a random Gaussian
variable having a mean of zero and a variance of .

III. SOFT-OUTPUT ANT COLONY OPTIMIZATION-BASED

MULTIUSER DETECTOR

A. Hard-Decision ACO-Based MUD

In the search process of each symbol interval, there will be
a maximum of search iterations. During each iteration, each
of the artificial ants will generate a trial vector constituted
by bits. The final search pool derived as the output of the

-iteration search process contains number of different vec-
tors, where we have . This implies that
the final search pool hosts only a small fraction of the entire
set of containing all the legitimate combinations, which
results in a significantly reduced complexity compared to the
exhaustive search process carried out by the ML detectors. For
more details on the conventional ACO-based MUD, the inter-
ested readers are referred to [3]–[5].

B. MUlti-Input Approximation (MUA) SO ACO-MUD

1) Theoretical Background: The soft-bit value expressed in
terms of the log-likelihood ratio (LLR) associated with the th
user can be formulated as [9]

(1)

where is the a posteriori probability of the
th user’s bit being 1 based on the observation of the received

signal vector and the CHTF matrix . Let us partition the
entire legitimate transmit signal set into subsets of and

according to the polarity of the th bit of the vector ,
for . In the Bayesian detector, the probability
of is given by the sum of the a posteriori
probabilities of all the vectors in the set based on the
observation of the received signal vector and the CHTF matrix

[8], which is formulated as

(2)
In contrast to the Bayesian detector, our novel MUA SO
ACO-MUD considers only the number of
combinations in both the search pool and used for
calculating the LLR of the th user. Hence, we have

(3)
Exploiting Bayes’ rule [8], we have

and noting that the denominator of this

formula may be expressed as ,
which is the same regardless which specific -bit string

is transmitted. Furthermore, noting that the a
priori probabilities are equal for all the legitimate

transmit vectors at the commencement of the detection process,
(2) and (3) can be further expressed as

(4)

(5)

As shown in Section II, is a random sample of the -dimen-
sional multivariate complex Gaussian distribution. Leaving out
the mathematical derivations outlined in [7], the final form of

and can be further expressed as

(6)

(7)

2) Steps of the Algorithm: Before we detail the MUA
SO-ACO algorithm, let us first formulate the likelihood value

of a legitimate vector during a certain symbol interval
as

(8)

where we express the MF’s output vector as and
the correlation matrix of the composite CIR matrix given by the
product of the CIR matrix and signature matrix during the
current symbol interval as .

The objective of the algorithms is to create the search pool
and having number of decision candidates in (7). To

achieve this goal, we may firstly partition the entire search pool
of the original hard-output ACO-MUD into the two subsets

of and based on the polarity of the th bit of the vectors
in . We denote the number of combinations in the subset
as . However, we may find that we have most of
the time and that sometimes we may even have or ,
which results in either the numerator or the denominator of (7)
becoming zero. This results in the corresponding LLR becoming

, which in turn results in a potential error propagation in
the channel decoding procedure. To avoid this situation, we will
invoke two parallel search processes for each of the users,
during which the th bit of all the vectors is fixed to 1 and

1, respectively. Thus, we may create the search pool and
as the output of the corresponding two search processes,

respectively.
Since we want to contain the most dominant number

of vectors from , we firstly sort all the elements in in
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descending order according to their likelihood values, yielding
their sorted counterparts . We then denote the th element in
the subset as . Thus, the most dominant vector in both
sets is . Furthermore, we denote the polarity of the th
detected bit as the sign of the difference between the likelihood
values of and , i.e., we have

. Since the size of the search pool is only a small
fraction of , most of the time we have , given

that the sorted counterpart of is . We may introduce an
error, when we include the vector-pair in the calculation of

, if . To address this problem,
we only incorporate the vector-pair into the calculation pool

and , respectively, if and only if
.

We may streamline the above descriptions in form of the fol-
lowing steps of the MUA SO-ACO algorithm used for gener-
ating the LLR of the th user.

1)
• Set the th bit of all the vectors in the search pool

to .
• Carry out a hard-decision-based ACO search, where the

size of the route table1 is reduced to
and record the value of the other bits of the
number of vectors in .

• Sort the vectors in according to their likelihood
values as calculated in (8) and create the sorted pool

.
2)

• Set the th bit of all the vectors in the search pool
to 1.

• Carry out a hard-decision-based ACO search, where the
size of the route table1 is reduced to
and record the value of the other bits of the
number of vectors in .

• Sort the vectors in according to their likelihood
value as calculated in (8) and create the sorted pool .

3) Compare the likelihood value of the two most dominant
vectors in and , respectively, and evaluate
as .

4)
a) Set
b)

if

• Push into and , respectively.
• and go to Item 4)b.

else Exit.

5) We let , which is the number of vectors in the final
search pool and , respectively.

6) Get the LLR according to (7).

The above algorithmic steps can be summarized in the
flow chart of Fig. 2(a). Furthermore, the value of the pa-

1The terminology “route table” has been defined in more detail in [4].

Fig. 2. Flow chart of the two SO ACO-based MUD algorithms. (a) MUA al-
gorithm. (b) MAA algorithm.

TABLE I
ALL THE DIFFERENT VECTORS APPEARING DURING THE CURRENT SYMBOL

INTERVAL ALONG WITH THEIR LIKELIHOOD VALUES

rameter and in (7) can be expressed as:

where and the search pool is given by:
.

3) Complexity Issues: As the search procedure of the MUA
algorithm progresses during a certain symbol interval, a large
number of vectors will repeatedly appear in the search pools
of the search processes employed for evaluating the LLR value
of different users , . For example, the same trial
vector may appear in the search pool when we
have . Thus, we may create a list containing all the
different vectors appearing during the current symbol interval
along with their likelihood values, as shown in Table I.

The likelihood value of a specific vector can be directly ob-
tained from the table without further calculations, provided that
it has already been calculated for this symbol interval. The same
mechanism can be used to obtain the Euclidean distance asso-
ciated with a specific vector, which is used in the calculation
of , as shown in (7). In conclusion, the complexity of the
MUA algorithm is significantly reduced, as we will quantify in
Fig. 4.

C. MAximum Approximation (MAA) SO ACO-MUD

The MAA Soft-ACO-based MUD algorithm has already been
described in our previous work [7], which may be regarded as a
special case of our novel MUA algorithm. More explicitly, the
final form of the th user’s LLR in the MAA algorithm can still
be described by (7). However, the value of the parameter and

in (7) will be simplified for the MAA algorithm as:
and , where we have
for all the and
for all the . Moreover, the subsets and are
obtained by partitioning the union according to the
polarity of the th bit of every vector in the union set. Again,
the flow chart of the MAA algorithm is detailed in Fig. 2(b).
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Fig. 3. BER versus SNR performance of the uplink DS-CDMA system
for transmission over uncorrelated flat Rayleigh fading channels using
� � ��-chip Gold codes.

Let us now characterize the achievable performance of the SO
ACO-based MUD.

IV. SIMULATION RESULTS

The proposed SO ACO-based MUD was combined with a
half-rate recursive systematic convolutional (RSC) code having
a constraint length of 3 and employing the BCJR algorithm [11].
The octally represented generator and feedback polynominal of
the RSC code was 7 and 5. The following parameters were used
for the SO-ACO MUDs: initial pheromone , evapora-
tion rate , number of ants , number of iterations

, weight of pheromone , weight of intrinsic
affinity , and weight for the elite ant . Additionally,
the system employed a random interleaver length of .
Fig. 3 shows that the DS-CDMA UL supporting users
with the aid of -chip Gold codes is capable of ap-
proaching the corresponding single-user system’s BER, regard-
less, whether the soft-output or hard-output ACO-based MUD
is used. However, the soft-output ACO-assisted DS-CDMA
scheme shows a significant SNR improvement compared to its
hard-output ACO-assisted counterpart. We may also observe
in Fig. 3 that the BER performance of both SO-ACO assisted
DS-CDMA ULs supporting users approaches that
of its Bayesian assisted counterpart supporting users.
The Bayesian assisted DS-CDMA UL supports only
users because the complexity of the system supporting a higher
number of users becomes excessive.

Fig. 4 shows that the complexity of the ACO-based MUD is
only a fraction of that of the ML or Bayesian detector, again,
regardless, whether hard- or soft-output aided detection is used.
More quantatively, when the number of users reaches ,
the complexity of both the hard-output or the soft-output ACO is
nearly a factor of lower than that of the optimum Bayesian
detector.

We observe a performance gap in Fig. 3 between the curve
representing the MAA SO ACO-based MUD and the Bayesian
MUD. This is because the MAA SO ACO-based MUD employs
only the most dominant component in both the numerator and
the denominator of the equation calculating the LLRs; thus, the
LLR value is not as accurate as that obtained by the Bayesian
MUD or by the MUA assisted SO ACO-based MUD. However,
the BER performance of the MUA SO ACO-based MUD as-
sisted DS-CDMA UL matches that of the Bayesian MUD, and
it exhibits an obvious improvement compared to the MAA SO

Fig. 4. Complexity per transmitted signal per user versus the number of users
of the DS-CDMA system employing � � ��-chip Gold codes.

ACO-based MUD, while the complexity of the former is only
slightly increased compared to that of the latter, as shown in
Fig. 4.

V. CONCLUSION

In conclusion, the proposed MUA SO ACO-based MUD
is capable of approaching the single-user performance, when
combined with a 1/2-rate convolutional code, as seen for the
DS-CDMA UL supporting users when employing
31-chip Gold sequences. The complexity of the MUA SO
ACO-based MUD is nearly a factor of lower than that of
the Bayesian MUD. The BER performance of the DS-CDMA
UL employing the MUA assisted SO ACO-based MUD shows
an improvement over the MAA assisted SO ACO-based MUD,
while the complexity of the former is only slightly higher than
that of the latter.
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