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Abstract
Relationships between genomic data and functional brain images are of great interest but require new
analysis approaches to integrate the high-dimensional data types. This letter presents an extension
of a technique called parallel independent component analysis (paraICA), which enables the joint
analysis of multiple modalities including interconnections between them. We extend our earlier work
by allowing for multiple interconnections and by providing important overfitting controls.
Performance was assessed by simulations under different conditions, and indicated reliable results
can be extracted by properly balancing overfitting and underfitting. An application to functional
magnetic resonance images and single nucleotide polymorphism array produced interesting findings.
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I. Introduction
With the rapid developments of genotyping and medical imaging, high-dimensional data from
different modalities are commonly collected and require advanced analysis approaches. With
genomic data, one can use the information obtained to study inherited disorders or to design
personalized pharmacologic interventions [1]. Currently, there is much interest in studying the
relationships between genomic data and endophenotypes (intermediate phenotypes). For
instance, schizophrenia susceptibility genes, such as Disrupted-In-Schizophrenia 1, Catechol-
O-methyl transferase, and brain-derived neurotrophic factor, have been closely investigated
using imaging techniques during different tasks [2].

Independent component analysis (ICA) is generally used to reveal factors embedded in large
datasets without knowing specific prior knowledge of the properties of these factors. A
modified ICA approach to accommodate two modalities simultaneously, parallel ICA
(paraICA), was initially introduced by our group [3], [4] to reveal independent components
from each modality and also to estimate the relationship among them. In this letter, we present
an extension of the algorithm to incorporate multiple interconnections between components
and also to address the important problem of overfitting. With such an extension, we are able
to reliably evaluate the interconnections between modalities. The paraICA methodology is first
introduced, including the addition of dynamic constraints. Next, the method is evaluated via
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simulation under various conditions. We then demonstrate a practical application to functional
magnetic resonance imaging (fMRI) data and single-nucleotide polymorphism (SNP) array
data from patients with schizophrenia and healthy controls. Finally, we briefly discuss our
approach.

II. Parallel ICA
A. Mathematical Model

The parallel ICA approach is formulated as a generative linear model with constraints as in
(1). Two observation matrices, X1 and X2, can be measurements from different modalities such
as MRI images or SNP genotypes. Two component matrices, S1 and S2, contain independent
sources such as brain activation networks or genetic associations for various phenotypes. The
two mixing matrices are A1 and A2. The constraint term, g(.), can be a user-defined relationship
among two A matrices or two 5 matrices, and it is best identified to be a physiologically
meaningful relationship. For simplicity, we choose the squared correlation between A matrices
as the constraint term, where a1i is the ith column of A1, a2j is the jth column of A2, Cov is the
covariance function, and Var is the variance function, as follows:

(1)

Based upon the infomax algorithm [5], maximization of the entropy H (Y) is used to maximize
the independence between components. The relationship between modalities is determined by
maximizing the squared correlation. Thus, the final cost function for maximization is derived
in (2), where U is the estimated independent source and W is the unmixing matrix [5]. The
update of the W matrix for Infomax ICA has been achieved by natural gradient maximization.
We utilize this approach in the parallel ICA algorithm and arrive at the update rules shown in
(3), where λ1, λ2, and λc are the learning rates for modalities 1,2 and the correlation terms and
η is the step size calculated at each step according to the Wolfe conditions [6]. The algorithm
thus identifies 1) the optimal W matrices, 2) the components from both modalities, and 3) a
specific relationship between the two modalities, as follows:

(2)

B. Dynamic Constraints
The constraint term is the bridge between two modalities, which is the essence of parallel ICA
and different from two totally separate ICA optimizations. The proper optimization of the
constraint plays a key role in convergence and avoiding overfitting and underfitting. There are
many potential reasons for overfitting or underfitting including data dimensionality and noise,
but critical parameters to adjust include the learning rates in (3) for the two entropy terms from
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the two modalities and for one correlation term representing the interconnections between the
modalities. We employ the following two strategies to conduct constraint optimization:
dynamically forced interconnections and adaptive learning rates:

For the first term:

For the second term:

For the third term:

(3)

For the dynamically forced interconnections, we allow the paraICA constraints to vary during
the optimization process. Under a subjective/empirical assumption of a correlation higher than
0.3 most likely being true, any pair of components with such a correlation at each iteration are
selected and the correlations are emphasized by constraints; one component can only be
selected once for each iteration. Thus, constrained interconnections can vary from iteration to
iteration based on their concurrent properties, in terms of which correlation and how many
correlations being stressed. This flexibility allows the constraints to be updated dynamically
while the algorithm is converging.

For the second strategy, we employ adaptive learning rates, which refer to continuously
changing learning rates of the three terms in the cost function. The reason to adaptively change
the learning rates is twofold. Firstly, the three terms have different characteristics, so they will
converge at different rates. However, they also interact with one another, so if one of the terms
dominates, then the learning will be suboptimal. To compensate for this, we assign learning
rates for each term and update them in parallel. Secondly, we adaptively adjust the learning
rate of the correlation term (λc in (3)) to mitigate against overfitting. By monitoring the entropy
term H(.) online, we can, to some degree, assess the overall effect of the connection term on
the overall cost function. The tolerance level for the H(.) is empirically selected in our study
based upon our simulation results. We adjust the λc based upon tolerance level to balance
independence and interconnection terms in the cost function. Therefore, we attempt to
emphasize the interconnections without jeopardizing the independence of the components in
each modality using the adaptive learning rates.
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III. Experimental Evaluation
We evaluate the performance of paraICA by examining both the component accuracy and the
connection accuracy, which are the correlation between the true source and the estimated
component, and the comparison of the extracted connection with the known connection.

A. Simulation
We generated two datasets with similar dimensionalites as the fMRI and SNP data investigated.
Data 1, resembling the fMRI data, had a dimension of 43-by-8000. Data 2, resembling the SNP
data, had a dimension of 43-by-367. Eight source signals with different distributions were
included for each dataset separately, as well as two random mixing matrices. One (for
simplicity) source from each dataset was correlated by making one column of the fMRI mixing
matrix similar to one column of the SNP mixing matrix to a certain degree. Random Gaussian
noise was superimposed into the mixed source data. To present a more comprehensive
understanding of potential overfitting and underfitting issues, we generated simulation data
with different connection strengths, estimated different numbers of components, and simulated
with different tolerance levels for the entropy term H (.). The connection strength is the
simulated relationship between the two modalities. The number of components embedded
within the data is usually unknown and hence must be estimated. The tolerance level defines
the proper weight associated with the constraint term.

B. fMRI and SNP Application
Sixty-three participants, all Caucasians, including 20 Schizophrenia patients and 43 healthy
controls, were recruited. FMRI data provide information about brain function whereas SNP
data can reveal genetic influences. FMRI data were collected during performance of an auditory
oddball task, which consists of detecting an infrequent sound within a series of frequent sounds.
Three types of sounds were presented: standard sound, target sound, and novel random digital
noises [7]. Images were preprocessed, including realignment, spatial normalization, and
spatially smoothed with a 10 mm3 Gaussian kernel, using the software package SPM2
(http://www.fil.ion.ucl.ac.uk/spm/). Data for each participant were analyzed by a multiple
regression incorporating regressors for the novel, target and standard stimuli, and their temporal
derivatives plus an intercept term. The resulting target-related contrast images were utilized in
this study, after using a mask to select only activated voxels. The resultant images with a size
of 7060 voxels were the input from fMRI modality to parallel ICA. A blood sample was
obtained for each subject and DNA extracted. Genotyping was performed using the Illumina
BeadArray platform and the GoldenGate assay. The PG Array of Genomas, Inc. was used,
which contains 384 SNPs from 222 genes from six physiological systems. Genotyping analysis
software, GenCall, was used to cluster the resultant intensities from the genotyping microarray
into three clusters: AA, AB, and BB, represented as 1, 0, and −1. Reliable genotype results
from 367 SNPs were selected as a modality for the paraICA.

IV. Results
We first present the simulation results followed by the results from the actual fMRI and SNP
data. Table I(a) lists the simulation results under different tolerance level, with eight estimated
components and a true inter-modal correlation of 0.6. Table I(b) lists the results for different
connection strengths, and a tolerance level of −1.0e – 3 and eight components. Table I(c) lists
the accuracies with different numbers of estimated components, when the tolerance level is
−1.0e – 3 and connection is 0.6. All the results are derived from ten runs.

For investigating the fMRI and SNP array, the dimensionality (number of components) is
estimated using a modified Akaike information criterion (AIC) [8] for the fMRI data and five
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fMRI components are selected. For the SNP array, we first use regular AIC method to estimate
components’ number and then reduce the component number to seven cautiously and
empirically to reach a consistence level among different runs, since the regular AIC tends to
overestimate for smoothed data. The paraICA results revealed a correlation of 0.38 between
one fMRI component and one genetic component, shown in Fig. 1. For display, only important
SNPs (weight |Z| score >2.5, representing the genetic component) and high activation regions
of brain (|Z| > 2.5) are presented.

V. Discussion and Conclusion
In our previous study [4], we demonstrated an earlier version of our paraICA algorithm and
showed improved performance compared to regular ICA, especially in terms of the connection
accuracy. In this letter, we update our algorithm and focus on how the parameters affect the
paraICA performance. We also apply our algorithm to new data to evaluate associations
between brain function and genomic factors. Under different tolerance levels, we show the
paraICA can provide different results for the same dataset, hence emphasizing the importance
of controlling for both overfitting and underfitting. Based on the simulation, we empirically
selected a tolerance level of −1.0e – 3. The simulation also demonstrates that paraICA is robust
to different connection strengths (see Table I(b)). However, the number of components
estimated, typically unknown in real data, has a large effect on the paraICA performance. An
over-estimated component increases overfitting and lowers the accuracy of the component,
and it produces a higher but false correlation. An underestimated component number also
decreases performance and underestimates the connection strength, illustrated in Table I(c).

For the real data, the related fMRI and SNP components found by paraICA present an
interesting relationship between brain function and its possible genetic traits. The largest
portion of brain function is located in precuneus, cuneus, and lingual gyrus areas, mainly
involved in memory retrieval [9]. Some of these regions were previously implicated in
schizophrenia and other psychiatric disorders [10], [11]. The linked genetic association consists
of ten contributing SNPs (in nine genes). Three of them, CHRNA7, DISC1, and CHAT, have
been previously reported to be closely associated with schizophrenia [12]–[14]. Gene DDC,
an enzyme implicated in two metabolic pathways, synthesizes important neurotransmitters,
dopamine, norepinephrine, epinephrine, and serotonin. Gene ADRA2A has a critical role in
regulating neurotransmitter in the cental nervous system. Both gene SCARB1 and gene
GNAO1 are expressed in the brain. These results are encouraging and show the utility of our
algorithm combining fMRI and SNP.

In summary, using an approach called parallel ICA, we built up a framework to combine two
high-dimensional data types, aiming to find hidden factors and connections between them.
With properly controlled constraints, avoiding overfitting and underfitting caused by multiple
reasons, reliable results can be obtained using this extended paraICA algorithm. Our algorithm
provides a promising way to assess multivariate genetic influence on endophenotypes, such as
brain function related to mental disorders. Given that current technology can investigate over
500000 SNPs, the analysis of such data will provide a more comprehensive means to identify
possible SNP/fMRI associations, and the proposed approach is well-suited to perform such an
analysis.
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Fig. 1.
Linked fMRI component and genetic component.
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Table I
Simulation Results

Extracted correlation Accuracy of SNP Accuracy of fMRI
(a) Tolerance level
−1e-1 0.64±0.06 0.96±0.10 0.98±0.01
−1e-2 0.62±0.04 0.99±0.01 0.97±0.01
−1e-3 0.59±0.03 0.99±0.00 0.98±0.01
−1e-4 0.56±0.02 1.00±0.00 0.98±0.01
−1e-5 0.55±0.03 1.00±0.00 0.98±0.01
(b) True correlation strength
1.00 0.96±0.03 1.00±0.00 0.99±0.00
0.80 0.77±0.04 1.00±0.00 0.99±0.00
0.60 0.59±0.03 0.99±0.00 0.98±0.01
0.40 0.41±0.05 0.99±0.01 0.98±0.01
0.20 0.17±0.02 1.00±0.00 0.97±0.01

(c) Estimated component number
4/4 0.48±0.03 0.98±0.04 0.80±0.00
6/6 0.52±0.15 0.98±0.01 0.86±0.22
8/8 0.59±0.03 0.99±0.00 0.98±0.01

10/10 0.64±0.04 0.84±0.34 0.98±0.01
12/12 0.74±0.08 0.65±0.35 0.97±0.01
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