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Abstract

In order to improve the performance of Least Mean Square (LMS) based system

identification of sparse systems, a new adaptive algorithm is proposed which utilizes the

sparsity property of such systems. A general approximating approach on l0 norm – a

typical metric of system sparsity, is proposed and integrated into the cost function of the

LMS algorithm. This integration is equivalent to add a zero attractor in the iterations,

by which the convergence rate of small coefficients, that dominate the sparse system, can

be effectively improved. Moreover, using partial updating method, the computational

complexity is reduced. The simulations demonstrate that the proposed algorithm can

effectively improve the performance of LMS-based identification algorithms on sparse

system.
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1 Introduction

A sparse system is defined whose impulse response contains many near-zero coefficients

and few large ones. Sparse systems, which exist in many applications, such as Digital TV

transmission channels [1] and the echo paths [2], can be further divided to general sparse

systems (Fig. 1. a) and clustering sparse systems (Fig. 1. b, ITU-T G.168). A clustering

sparse system consists of one or more clusters, wherein a cluster is defined as a gathering of

large coefficients. For example, the acoustic echo path is a typical single clustering sparse

system, while the echo path of satellite links is a multi-clustering system which includes

several clusters.

There are many adaptive algorithms for system identification, such as Least Mean

Squares (LMS) and Recursive Least Squares (RLS) [3]. However, these algorithms have
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Figure 1: Typical sparse system.

no particular advantage in sparse system identification due to no use of sparse character-

istic. In recent decades, some algorithms have exploited the sparse nature of a system

to improve the identification performance [2, 4–10]. As far as we know, the first of them

is Adaptive Delay Filters (ADF) [4], which locates and adapts each selected tap-weight

according to its importance. Then, the concept of proportionate updating was originally

introduced for echo cancellation application by Duttweiler [2]. The underlying principle of

Proportionate Normalized LMS (PNLMS) is to adapt each coefficient with an adaptation

gain proportional to its own magnitude. Based on PNLMS, there exists many improved

PNLMS algorithms, such as IPNLMS [5] and IIPNLMS [6]. Besides the above mentioned

algorithms, there are various improved LMS algorithms on clustering sparse system [7,8,10].

These algorithms locate and track non-zero coefficients by dynamically adjusting the length

of the filter. The convergence behaviors of these algorithms depend on the span of clusters

(the length from the first non-zero coefficient to the last one in an impulse response). When

the span is long and close to the maximum length of the filter or the system has multiple

clusters, these algorithms have no advantage compared to the traditional algorithms.

Motivated by Least Absolutely Shrinkage and Selection Operator (LASSO) [11] and

the recent research on Compressive Sensing (CS) [12], a new LMS algorithm with l0 norm

constraint is proposed in order to accelerate the sparse system identification. Specifically, by

exerting the constraint to the standard LMS cost function, the solution will be sparse and

the gradient descent recursion will accelerate the convergence of near-zero coefficients in the

sparse system. Furthermore, using partial updating method, the additional computational

complexity caused by l0 norm constraint is far reduced. Simulations show that the new

algorithm performs well for the sparse system identification.
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2 New LMS Algorithm

The estimation error of the adaptive filter output with respect to the desired signal d(n) is

e(n) = d(n)− xT(n)w(n), (1)

wherew(n) = [w0(n), w1(n), · · · , wL−1(n)]
T and x(n) = [x(n), x(n − 1), · · · , x(n− L+ 1)]T

denote the coefficient vector and input vector, respectively, n is the time instant, and L is the

filter length. In traditional LMS the cost function is defined as squared error ξ(n) = |e(n)|2.

By minimizing the cost function, the filter coefficients are updated iteratively,

wi(n+ 1) = wi(n) + µe(n)x(n− i), ∀0 ≤ i < L, (2)

where µ is the step-size of adaptation.

The research on CS shows that sparsity can be best represented by l0 norm, in which

constraint the sparsest solution is acquired. This suggests that a l0 norm penalty on the

filter coefficients can be incorporated to the cost function when the unknown parameters

are sparse. The new cost function is defined as

ξ(n) = |e(n)|2 + γ‖w(n)‖0, (3)

where ‖ · ‖0 denotes l0 norm that counts the number of non-zero entries in w(n), and γ > 0

is a factor to balance the new penalty and the estimation error. Considering that l0 norm

minimization is a Non-Polynomial (NP) hard problem, l0 norm is generally approximated

by a continuous function. A popular approximation [13] is

‖w(n)‖0 ≈

L−1
∑

i=0

(

1− e−β|wi(n)|
)

, (4)

where the two sides are strictly equal when the parameter β approaches infinity. According

to (4), the proposed cost function can be rewritten as

ξ(n) = |e(n)|2 + γ

L−1
∑

i=0

(

1− e−β|wi(n)|
)

. (5)

By minimizing (5), the new gradient descent recursion of filter coefficients is

wi(n+ 1) = wi(n) + µe(n)x(n − i)− κβsgn(wi(n))e
−β|wi(n)|, ∀0 ≤ i < L, (6)

where κ = µγ and sgn(·) is a component-wise sign function defined as

sgn(x) =







x
|x|

x 6= 0;

0 elsewhere.
(7)
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Table 1: The Pseudo-codes of l0-LMS

Given L, Q, µ, β, κ;

Initial w = zeros(L,1), f = zeros(L,1);

For i = 1,2,· · ·

input new x and d;

e = d - x’*w;

t = mod(i,Q);

f(t+1:Q:L) = -β*max(0, 1 - β*abs(w(t+1:Q:L))).*sign(w(t+1:Q:L));

w = w + µ*e*x + κ*f;

End

To reduce the computational complexity of (6), especially that caused by the last term,

the first order Taylor series expansions of exponential functions is taken into consideration,

e−β|x| ≈

{

1− β|x| |x| ≤ 1
β
;

0 elsewhere.
(8)

It is to be noted that the approximation of (8) is bounded to be positive because the

exponential function is larger than zero. Thus equation (6) can be approximated as

wi(n+ 1) = wi(n) + µe(n)x(n− i) + κfβ (wi(n)) ∀0 ≤ i < L, (9)

where

fβ(x) =















β2x+ β − 1
β

≤ x < 0;

β2x− β 0 < x ≤ 1
β
;

0 elsewhere.

(10)

The algorithm described by (9) is denoted as l0-LMS. Its implementation costs more

than traditional LMS due to the last term in the right side of (9). It is necessary, therefore,

to reduce the computational complexity further. Because the value of the last term does not

change significantly during the adaptation, the idea of partial updating [14] [15] can be used.

Here the simplest method of sequential LMS is adopted. That is, at each iteration, one in

Q coefficients (where Q is a given integer in advance) is updated with the latest fβ(wi(n)),

while those calculated in the previous iterations are used for the other coefficients. Thus, the

excessive computational complexity of the last term is one in Qth of the original method.

More detailed discussion on partial update can be found in [14]. The final algorithm is

described using MATLAB like pseudo-codes in TABLE 1.

In addition, the proposed l0 norm constraint can be readily adopted to improve most

LMS variants, e.g. NLMS [3], which may be more attractive than LMS because of its
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robustness. The new recursion of l0-NLMS is

wi(n+ 1) = wi(n) + µ
e(n)x(n − i)

δ + xT(n)x(n)
+ κfβ (wi(n)) , ∀0 ≤ i < L, (11)

where δ > 0 is the regularization parameter.

3 Brief Discussion

The recursion of filter coefficients in the traditional LMS can be expressed as

wnew = wprev + gradient correction, (12)

where the filter coefficients are updated along the negative gradient direction. Equation (9)

can be presented in the similar way,

wnew = wprev + gradient correction + zero attraction, (13)

where zero attraction means the last term in (9), κfβ (wi(n)), which imposes an attraction

to zero on small coefficients. Particularly, referring to Fig. 2, after each iteration, a filter

weight will decrease a little when it is positive, or increase a little when it is negative.

Therefore, it seems that in R
L space of tap coefficients, an attractor, which attracts the

non-zero vectors, exists at the coordinate origin. The range of attraction depends on the

parameter, β.

The function of zero attractor leads to the performance improvement of l0-LMS in sparse

system identification. To be specific, in the process of adaptation, a tap coefficient closer

to zero indicates a higher possibility of being zero itself in the impulse response. As shown

in Fig. 2, when a coefficient is within a neighborhood of zero, (−1/β, 1/β), the closer it is

to zero, the greater the attraction intensity is. When a coefficient is out of the range, no

additional attraction is exerted. Thus, the convergence rate of those near-zero coefficients

will be raised. In conclusion, the acceleration of convergence of near-zero coefficients will

improve the performance of sparse system identification since those coefficients are in the

majority.

According to the above analysis, it can be readily accepted that β and κ determine the

performance of the proposed algorithm. Here a brief discussion about the choice of these

two parameters will be given.

• The choice of β: As mentioned above, strong attraction intensity or a wide attraction

range, which means the tap coefficients are attracted more, will accelerate the conver-

gence. According to Fig. 2, a large β means strong intensity but a narrow attraction

range. Therefore, it is difficult to evaluate the impact of β on the convergence rate.

For practical purposes, Bradley and Mangasarian in [13] suggest to set the value of

β to some finite value like 5 or increased slowly throughout the iteration process for

better approximation. Here, β = 5 is also proper. Further details are omitted here

for brevity. And readers of interest please refer to [13].
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Figure 2: The curves of function fβ(x) with β=5, 10, 15, 20.

• The choice of κ: According to (3) or (9), the parameter κ denotes the importance of l0

norm or the intensity of attraction. So a large κ results in a faster convergence since

the intensity of attraction increases as κ increases. On the other hand, steady-state

misalignment also increases as κ increases. After the adaptation reaches steady state,

most filter weights are near to zero due to the sparsity. We have |κfβ(wi(n))| ≈ κβ

for most i. Regarding to those near-zero coefficients, wi(n) will move randomly in

the small neighborhood of zero, driven by the attraction term as well as the gradient

noise term. Therefore, a large κ results in a large steady-state misalignment. In

conclusion, the parameters κ are determined by the trade-off between adaptation

speed and adaptation quality in particular applications.

4 Simulations

The proposed l0-NLMS is compared with the conventional algorithms NLMS, Stochastic

Taps NLMS (STNLMS) [7], IPNLMS, and IIPNLMS in the application of sparse system

identification. The effect of parameters of l0-LMS is also tested in various scenarios. β = 5

and the proposed partial updating method with Q = 4 for l0-LMS and l0-NLMS is used in

all the simulations.

The first experiment is to test the convergence and tracking performance of the proposed

algorithm driven by a colored signal. The unknown system is a network echo path, which

is initialized with the echo path model 5 in ITU-T recommendation, delayed by 100 taps

and tailed zeros (clustering sparse system, Fig. 1. b). After 3 × 104 iterations, the delay
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Figure 3: Comparison of convergence rate for five different algorithms, driven by colored

signal.

is enlarged to 300 taps and the amplitude decrease 6dB. The input signal is generated

by white Gaussian noise u(n) driving a first-order Auto-Regressive (AR) filter, x(n) =

0.8x(n − 1) + u(n), and x(n) is normalized. The observed noise is white Gaussian with

variance 10−3. The five algorithms are simulated for a hundred times, respectively, with

parameters L = 500, µ = 1. The other parameters as follows.

• IPNLMS [5] and IIPNLMS [6]: ρ = 10−2, α = 0, α1 = −0.5, α2 = 0.5,Γ = 0.1;

• ST-NLMS: the initial positions of the first and last active taps of the primary filter

are 0 and 499, respectively; those of the auxiliary filter are randomly chosen;

• l0-NLMS: κ = 8× 10−6;

Please notice that the parameters of all algorithms are chosen to make their steady-state

errors the same. The Mean Square Deviations (MSDs) between the coefficients of the

adaptive filter and the unknown system are shown in Fig. 3. According to Fig. 3, the

proposed l0-NLMS reaches steady-state first among all algorithms. In addition, when the

unknown system abruptly changes, again the proposed algorithm reaches steady-state first.

The second experiment is to test the convergence performance of l0-LMS with different

parameters κ. Suppose that the unknown system has 128 coefficients, in which eight of

them are non-zero ones (their locations and values are randomly selected). The driven

signal and observed noise are white, Gaussian with variance 1 and 10−4, respectively. The

filter length is L = 128. The step-size of l0-LMS is fixed to 10−2, while κ is with different

values. After a hundred times run, their MSDs are shown in Fig. 4, in which MSDs of LMS
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Figure 4: Learning curves of l0-LMS with different κ, driven by white signal.

(µ = 10−2) are also plotted for reference. It is evidently recognized that l0 norm constraint

algorithm converges faster than its ancestor. In addition, from the figure, it is obvious that

a larger κ results in a higher convergence rate but a larger steady-state misalignment. These

illustrate again that a delicate compromise should be made between the convergence rate

and steady-state misalignment for the choice of κ in practice. Certainly, the above results

are consistent with the discussion in the previous section.

The third experiment is to test the performance of l0-LMS algorithm with various spar-

sities. The unknown system is supposed to have a total of 128 coefficients and is a general

sparse system. The number of large coefficients varies from 8 to 128, while the other coef-

ficients are Gaussian noise with a variance of 10−4. The input driven signal and observed

noise are the same as that in the first experiment. The filter length is also L = 128. In

order to compare the convergence rate in all scenarios, the step-sizes are fixed to 6× 10−3.

Parameter κ is carefully chosen to make their steady-state error the same (TABLE 2).

All algorithms are simulated 100 times respectively and their MSDs are shown in Fig. 5.

As predicted, the number of the large coefficients has no influence on the performance of

LMS. However, the convergence rate decreases as the number of large coefficients increases

for l0-LMS. Therefore, the new algorithm is sensitive to the sparsity of system, that is, a

sparser system has better performance. As the number of large coefficients increases, the

performance of l0-LMS is gradually degraded to that of standard LMS. Meanwhile, it is to

be emphasized that in all cases, the l0-LMS algorithm is never worse than LMS.
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Table 2: The parameters of l0-LMS in the 3rd experiment.

LCN 1 8 16 32 64 128

κ 8× 10−5 5.5× 10−5 4.5× 10−5 3.5 × 10−5 10−6

[1]LCN denotes Large Coefficients Number.
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Figure 5: Learning curves of l0-LMS and LMS with different sparsities, driven by white
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5 Conclusion

In order to improve the performance of sparse system identification, a new LMS algorithm

is proposed in this letter by introducing l0 norm, which has vital impact on sparsity, to

the cost function as an additional constraint. Such improvement can evidently accelerate

the convergence of near-zero coefficients in the impulse response of a sparse system. To

reduce the computing complexity, a method of partial updating coefficients is adopted. Fi-

nally, simulations demonstrate that l0-LMS accelerates the identification of sparse systems.

The effects of algorithm parameters and unknown system sparsity are also verified in the

experiments.
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