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Accurate and Simple Estimator
for Lossy Wave Equation

H. C. So, Senior Member, IEEE, Md. Tawfiq Amin, and Frankie K. W. Chan

Abstract—In this letter, parameter estimation of a uniformly
sampled signal that satisfies the lossy wave equation in Gaussian
noise is investigated. By exploiting the linear prediction property
of the noise-free signal, a maximum likelihood estimator for the
parameters is first developed. Relaxation is then applied to yield
a simple and accurate algorithm. It is shown that the estimation
performance of the proposed method attains Cramér–Rao lower
bound.

Index Terms—Linear prediction, maximum likelihood esti-
mator, parameter estimation, wave equation.

I. INTRODUCTION

C ONSIDER the one-dimensional wave equation:

(1)

where is a measured phenomenon at location and time
that satisfies (1) and is the wave propagation speed. It is well

known that the general solution of Fourier transform of ,
denoted by , is of the form

(2)

where is the unknown wave number while and are
unknown complex constants determined by the auxiliary or
boundary conditions. As (2) is a realistic model of the phys-
ical phenomenon in many scenarios [1] such as describing the
voltage along a transmission line and medical imaging modality
of elastography, it is of interest to find the complex-valued pa-
rameters, namely, , and .

In [1], the nonlinear least squares (NLS) algorithm is pro-
posed to find the parameters of interest given a sampled and
noisy version of (2). Although the NLS estimator can attain the
maximum likelihood (ML) performance under white Gaussian
noise environment, it is hard to implement in practice as its ob-
jective function is multi-modal. Noting that (2) corresponds to
the sum of two exponentially damped sinusoids, an alternative
approach is to utilize its linear prediction (LP) property [2] and
apply the iterative quadratic maximum likelihood (IQML) tech-
nique [3], [4] to solve for first, and and are then esti-
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mated accordingly. In this letter, we show that the LP structure
of (2) can be further simplified with the use of the conjugate
nature in the exponential terms. Based on the IQML approach,
a different ML estimator is developed and relaxation is then
made to produce a computationally attractive algorithm with a
global solution. Computer simulation shows that the estimation
performance of the proposed relaxation method can attain the
minimum variance bound, namely, Cramér-Rao lower bound
(CRLB) [1] and is superior to the NLS and standard IQML es-
timators in terms of threshold performance.

II. ALGORITHM DEVELOPMENT

The discrete-time model for the uniformly sampled signal
that satisfies (2) in additive noise is

(3)

For simplicity but without loss of generality, unity sampling
interval is assumed and is a zero-mean white complex
Gaussian process with unknown variance . Given the mea-
surements of , , the objective is to find , and

.
As consists of two exponentially damped sinusoids, it

will follow the LP property:

(4)

where is determined from the roots of [2].
With the use of (2), (4) is expanded as:

(5)

As (5) holds for all values of and , we then have two equa-
tions, namely, and

. Solving them yields and ,
and thus (4) can be simplified as

(6)

which corresponds to a very simple LP relation as in the case of
a single real tone but now is a complex number. As in
conventional sinusoidal parameter estimation, finding is the
first and crucial step because it is a nonlinear function in the
received data sequence. The remaining parameters, namely,
and , can then be estimated in a more straightforward manner
after its determination.

Let and define
, , where denotes the transpose operator.

Using (6) and following the development in [5], it is shown that
the ML estimate for , denoted by , in the presence of Gaussian
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noise, can be determined from the minimization problem shown
in (7) at the bottom of the page. where is the optimization
variable for , and represent the conjugate transpose and
matrix inverse operations, respectively. The covariance matrix

is also a function of and has the form of where
is the expectation operator, with

whose element is ,
. For zero-mean white Gaussian noise,

has the form of (8), shown at the bottom of the page, where
denotes Toeplitz operator, is the conjugate operator

and is ignored as it has no effect on the minimization of (7).
It is noteworthy that this ML estimator can be extended to more
general Gaussian process of as long as is known up to
a scalar. As in the NLS estimator of [1], the objective function
in (7) is also multi-modal, which means that it is not guaranteed
to find the globally optimum point.

Utilizing the idea of the IQML technique [3], [4], we relax
(7) into a quadratic function by considering is independent of

so that global optimization is attained and the estimate of ,
denoted by , is easily computed as:

(9)

The estimated is then employed to update . We repeat the
above steps for a few times with an initial guess of . The iter-
ative procedure of the proposed estimator for is summarized
as follows.

a) Set to be the identity matrix.
b) Compute using (9).
c) Use to construct of (8).
d) Repeat Steps (ii) and (iii) for times until parameter con-

vergence.
e) (v) Use the finalized to compute the estimate of as

.
When the initial estimate of is sufficiently accurate, it is ex-
pected that global convergence is attained. To derive the con-
vergence properties of the relaxation algorithm, the interested
reader is referred to [6]. Employing , and are then solved
by minimizing the following least squares (LS) cost function:

(10)

where and are the corresponding optimization variables.
Differentiating (10) with respect to and and setting the re-
sultant expressions to zero, the LS estimates of and , de-
noted by and , are computed as

(11)

where

...
...

We expect that and are optimum estimates as long as is
optimum because the disturbance in (10) is white.

III. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the
parameter estimation performance of the proposed algorithm
for lossy wave equation in zero-mean white complex Gaussian
noise. The mean square errors (MSEs), namely, ,

and , are employed as the perfor-
mance measures. The NLS [1] and standard IQML [2] methods
as well as the corresponding minimum variance bounds, namely,
CRLBs, are used for comparison. We examine in
the proposed relaxation method as no obvious improvement is
observed for more iterations. On the other hand, the NLS algo-
rithm is realized by the Newton’s method with the true values
as initial estimates. For the IQML algorithm based on the LP
model of (4), five iterations are employed. There are two roots
in but we notice that only one of them
is valid, and the following procedure is devised to select the
correct one. Two are computed from the two roots and the
corresponding estimates of and are then determined using
(11). The IQML estimates are given by the parameter set which
produces the smaller value of (10). We scale to produce
different signal-to-noise ratio (SNR) condition where

. Unless stated otherwise, the parame-
ters of are , and

(7)

...
...

...
...

...
...

...
...

(8)
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Fig. 1. Mean square error for � versus SNR.

Fig. 2. Mean square error for � versus SNR.

while a data length of is assigned. All
results provided are averages of 1000 independent runs.

In the first test, the parameter estimation performance versus
SNR is examined. Figs. 1–3 show the MSEs of , and
versus SNR, respectively. In our method, the accuracy of all
parameters of interest attains the corresponding CRLBs for

. Although the NLS and IQML methods
also give optimum performance for higher SNRs, the proposed
scheme is superior to them as it has a smaller threshold SNR.
Furthermore, we observe that the difference between
and in our algorithm is negligible. Note that all methods
become biased estimators for as their MSEs for

are below the performance limits.
In the second test, the average performance for different

values of is studied. In fact, the real and imaginary parts of
correspond to the frequency and damping factor of a damped
sinusoid, and according to [1], their typical ranges are
and , respectively. As and are nuisance parameters
which are obtained after estimating , their randomization is
not considered. In Fig. 4, the real part of is uniformly drawn
from in each independent trial, while in Fig. 5,
the imaginary component of is a uniform number drawn from

Fig. 3. Mean square error for � versus SNR.

Fig. 4. Average performance for � versus SNR when its real part is randomized.

in each run. The findings from Figs. 4 and 5 are similar to
those of the first test. Notice that the results for and have
not been included as similar observations are obtained.

Finally, the effect of on the accuracy is investigated. Fig. 6
shows the MSEs of for . It is seen that the proposed
estimator outperforms the other two as it gives optimum perfor-
mance for , although optimality is not attained at

. Again, the results for and have not been included
as similar observations are obtained. Based on the simulation
study, we believe that the initial estimate of is crucial for ob-
taining the global solution, that is, global convergence will be
attained if it is sufficiently close to the global minimum of (7).
When the data length is too short and/or the SNR is too small,
it is very likely that the initial estimate of is far from the global
minimum which results in local convergence.

IV. CONCLUSION

An accurate and computationally simple estimator for pa-
rameters of the lossy wave equation in additive white complex
Gaussian noise is devised. The key ideas are to utilize the
signal linear prediction property and relax the corresponding
maximum likelihood estimator. It is demonstrated that the
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Fig. 5. Average performance for � versus SNR when its imaginary part is ran-
domized.

estimation performance of the proposed algorithm can attain
Cramér–Rao lower bound and outperform the nonlinear least
squares and standard iterative quadratic maximum likelihood
methods. A possible future direction is to extend the algo-
rithm development to higher-dimensional spaces by using
Green’s functions to find the implicit relationship similar to
(6), although boundary conditions and sampling issues will
significantly complicate the study.
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Fig. 6. Mean square error for � versus � .
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