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Abstract

In this Letter, we show that under the assumption of high resolution,

the quantization errors of fGn and fBm signals with uniform quantizer

can be treated as uncorrelated white noises.

1 Introduction

Fractional Gaussian noise (fGn) and fractional Brownian motion (fBm) provide
convenient ways to describe stochastic processes with long-range dependencies.
Thus, they have received continuing interests in various fields and have many
applications, e.g. modeling the communication networks flow and economic
times series [1]-[3].

Of particular interest is the estimation of the Hurst exponent H of a fGn
or fBm process. In practice, such estimations are usually done on the sampled
and quantized time series. For example, texture images are often viewed as 2D
fBm signals uniformly quantized to the 0 − 255 scale [4], [5]. As will be shown
later, the quantization error might significantly affect the estimation result.

To the best of our knowledge, no reports discussed the effect of quantization
errors of fGn and fBm processes. In this Letter, we will show that under the
assumption of high resolution, the quantization error can be viewed as a white
noise added to the sampled fGn or fBm signal.

2 The Discrete-Time fGn and fBm Signals

There exist different kinds of discrete-time approximation for the continuous-
time fGn and fBm processes, e.g. [6]-[8]. In this Letter, we will use the two-step
discrete-time approximation signals defined in [9]:
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1) First, the standard discrete-time fGn processWH(n) with Hurst exponent
H ∈ (0, 1) is defined as a weighted sequence of a standard Gaussian white noise
W (n)

WH(n) =

{

∑n
i=0 h

H− 1

2

n−i W (i) for H 6= 1
2

W (n) for H = 1
2

(1)

where W (n) ∼ N(0, 1) and h
H− 1

2

n =
Γ(n+H− 1

2
)

Γ(H− 1

2
)Γ(n+1)

, n ∈ N ∪ {0}.
2) Second, the discrete-time fBm processBH(n) is represented as the running

sum of WH(n)

BH(n) =

n
∑

i=0

WH(i) =

n
∑

i=0

i
∑

j=0

h
H− 1

2

i−j W (j) (2)

As pointed out in [10], [11], Eq.(1)-(2) are indeed ARFIMA processes, which
can be rewritten in terms of the lag operator L:

WH(n) =

{

(1− L)
1

2
−HW (n) for H 6= 1

2
W (n) for H = 1

2

(3)

and
(1 − L)BH(n) = BH(n)−BH(n− 1) =WH(n) (4)

where (1 − L)d =
∑∞

k=0
Γ(k−d)

Γ(−d)Γ(k+1)L
k. The truncated formulas in (1)-(4) are

equivalent to infinite formulas with W (i) = 0 for i ≤ 0; they are used here since
we usually consider the case with WH(i) = 0 for i ≤ 0 [1]-[3].

For clarity, we focus on the above standard discrete-time fBm process but
the conclusions can be easily extended to general cases.

3 The High-resolution Quantization Errors of

the fGn and fBm Signals

The use of high resolution theory for error process analysis can date back to
late 1940s [12], [13]. In [13], Bennett demonstrated that under the assump-
tion of high resolution and smooth density of the sampled random process, the
quantization error behaves like an additive white noise. In other words, the
quantization error has small correlation with the signal and an approximately
white spectrum; see also the good surveys in [14]-[16]. In the sequel, we will
show that this conclusion also holds for fGn and fBm signals. Our proof mainly
uses the results in [17].

Suppose the original discrete-time fGn or fBm sequence SH(n) is bounded
within [−b, b] in a finite time horizon [0, t] and an M -level uniform quantizer
in [−b, b] is applied. We also assume the sample rate and the resolution of the
quantizer are high enough.
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As shown in [17], by defining ∆ = 2b
M−1 , the normalized quantization noise

e(n) of SH(n) can be represented as the normalized quantization noise of the
sigma-delta modulator for SH(n):

e(n) ,
1

2
− 〈

n
∑

i=0

(

(M − 1)SH(n)

∆
+

1

2

)

〉 (5)

where 〈z〉 = x mod 1 is the fractional part of x.
In the following subsections, we will discuss the quantization errors of the

fGn and fBm signals, respectively.

3.1 fGn Signals

For the sigma-delta modulator, we have the following useful lemmas.

Lemma 1 [17] Define an casual stable MA process x(n)

x(n) = ψ(L)z(n) =

n
∑

i=0

ψiz(n− i) (6)

where z(n) is an i.i.d process having a certain distribution with smooth den-
sity. If the regression coefficients ψi of this MA process satisfy that there exist
η > 0 and infinitely many values of r such that |ψ0 + ...+ ψr| > η, then the
distribution of the normalized quantization error e(n) under modulo sigma-delta
modulation converges to the uniform distribution in [− 1

2 ,
1
2 ] under the assump-

tion of high resolution. 1

Lemma 2 [18] The following series 1F0(α, z) is a special hypergeometric series

∞
∑

i=0

Γ(α+ i)

Γ(α)Γ(i + 1)
zi = 1F0(α, z) (7)

where α, z ∈ C.
If 1 ≥ Re(α) > 0, the series converges throughout the entire unit circle

|z| = 1 except for the point z = 1. If Re(α) < 0, the series converges (absolutely)
throughout the entire unit circle |z| = 1. Particularly, the special hypergeometric
series 1F0(α, 1) converges to 0, when Re(α) < 0.

Now we can prove the first main result of this Letter using Lemma 1 and
Lemma 2.

1Lemma 1 is actually a slightly modified version of Property 3 in [17], but it is not difficult
to see that the proof in [17] can be applied to Lemma 1 with little modification.
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Theorem 1 The quantization error of fGn process with uniform quantizer is
asymptotically uniformly distributed in [− 1

2 ,
1
2 ] under the assumption of high

resolution.

Proof 1 We will discuss the following three cases of 0 < H < 1
2 , H = 1

2 , and
1
2 < H < 1, respectively. From Eq.(3), we know that the coefficients of an fGn

signal are ψG,i = h
H− 1

2

i .
i) For H ∈ (0, 12 ), Γ(H − 1

2 ) < 0. Because 0 > H − 1
2 > − 1

2 ,
∑∞

i=0 ψG,i =
∑∞

i=0
Γ(i+H− 1

2
)

Γ(H− 1

2
)Γ(i+1)

= 0 by Lemma 2. Thus we cannot directly apply Lemma 1

here. However, the convergence speed of this series satisfies
∑n

i=0
Γ(i+H− 1

2
)

Γ(H− 1

2
)Γ(i+1)

≥
1√
n

for H ∈ (0, 12 ) [19]. Based on these observations, we will derive the limit

distribution of the quantization error through the limit of its characteristic func-
tion.

As proven in [17], we can rewrite Eq.(5) as

e(n) = 1− 1

2
〈θ(n)〉 (8)

where θ(n) ,
∑n

i=0

(

WH (i)
∆ + 1

2

)

.

The corresponding characteristic function can be written as
∣

∣Φ〈θ(n)〉(2πl)
∣

∣

=
∣

∣E
{

exp
[

2π l
∆

(

WH(n) + ...+WH(0)
)]}∣

∣

=
∣

∣

∣E
{

exp
[

2π l
∆

(

∑n
i=0 h

H− 1

2

i W (n− i) + ...+W (0)
)]}∣

∣

∣

(9)

The innermost sum in Eq.(9) can be grouped as

∑n
i=0 h

H−1/2
i W (n− i) + ...+W (0)

= h
H− 1

2

0 W (n) + (h
H− 1

2

0 + h
H− 1

2

1 )W (n− 1) +

...+ (h
H− 1

2

0 + ...+ h
H− 1

2

n )W (0) (10)

Hence

lim
n→∞

Φ〈θn〉(2πl)

= lim
n→∞

E







n
∏

i=0

ΦW



2π
l

∆

i
∑

j=0

h
H− 1

2

j











(11)

Notice that the characteristic function of a standard Gaussian process is
ΦW (ω) = exp(− 1

2ω
2), ω ∈ R. We have

∣

∣

∣

∣

∣

∣

ΦW



2π
l

∆

i
∑

j=0

h
H− 1

2

j





∣

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

∣

ΦW



2π
l

∆

i
∑

j=0

Γ(H − 1
2 + j)

Γ(H − 1
2 )Γ(j + 1)





∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

ΦW

(

2π
l

∆

1√
i

)∣

∣

∣

∣

(12)

The harmonic series
∑∞

i=1
1
i diverges; in other words, for any small positive

number ǫ > 0, we can always find a large enough integer n∗ such that

n∗

∑

i=1

1

i
> − ln (ǫ)

(

∆

2πl

)2

(13)

or equivalently

exp

[

−
(

2πl

∆

)2 n∗

∑

i=1

1

i

]

< ǫ (14)

From (11), (12) and (14), it follows that for any small ǫ > 0, there exists a
large enough integer n∗ such that for all n > n∗,

∣

∣Φ〈θn〉(2πl)
∣

∣ ≤
∣

∣

∣

∣

∣

E

{

n−1
∏

i=0

ΦW

(

2π
l

∆

1√
i

)

}∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E

{

exp

[

−
(

2π
l

∆

)2 n
∑

i=0

1

i

]}∣

∣

∣

∣

∣

< ǫ (15)

which means

lim
n→∞

Φ〈θn〉(2πl) =

{

1 , l = 0
0 , l 6= 0

(16)

Therefore, the distribution of 〈θ(n)〉 converges to the uniform distribution in
[0, 1] and the limit distribution of e(n) is U [− 1

2 ,
1
2 ].

ii) For H = 1
2 , we directly have

∑∞
i=0 ψG,i = 1 6= 0, so Lemma 1 applies.

iii) For H ∈ (12 , 1),
∑∞

i=0 ψG,i =
∑∞

i=0
Γ(i+H− 1

2
)

Γ(H− 1

2
)Γ(i+1)

diverges by Lemma 2.

It then follows from the definition of divergence that the premise of Lemma 1
are satisfied.

3.2 fBm Signals

To analyze the quantization error of fBm processes, we need another lemma
from [17].
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Lemma 3 [17] Define an AR(1) process x(n) as

x(n)− x(n− 1) = z(n) (17)

If the input z(n) is a stationary independent increments, the normalized
quantization noise e(n) of the modulo sigma-delta modulation converges to the
uniform distribution in [− 1

2 ,
1
2 ] and has a white spectrum under assumption of

high resolution.

Lemma 3 directly applies to the quantization error of fBm processes with
H = 1

2 (indeed, the Brownian motion). For H 6= 1/2 the techniques used for
proving this lemma in [17] can also be adopted to characterize the quantization
error.

Theorem 2 The quantization noise with uniform quantizer of fBm process is
asymptotically uniformly distributed and white under the assumption of high
resolution.

Proof 2 i) For H = 1
2 , we have

BH(n)−BH(n− 1) =WH(n) (18)

which follows directly from Lemma 3.
ii) For H ∈ (0, 12 ) ∪ (12 , 1), we will derive the limit distribution using the

characteristic function. We can define

e(n) = 1− 1

2
〈δ(n)〉 (19)

where δ(n) ,
∑n

i=0

(

BH(i)
∆ + 1

2

)

.

From Eq.(1) and Eq.(2), we know the regression coefficients of an fBm signal

are ψB,i =
∑i

j=0(i−j)h
H− 1

2

j . Hence in the case of H ∈ (12 , 1), there exists η > 0
and infinitely many values of r such that

|ψB,0 + · · ·+ ψB,r| =
∣

∣

∣rh
H− 1

2

0 + · · ·hH− 1

2

r

∣

∣

∣

>
∣

∣

∣h
H− 1

2

0 + · · ·hH− 1

2

r

∣

∣

∣ > η (20)

where the last inequality follows from part iii) of the proof of Theorem 1. Now
Lemma 1 applies and the distribution of e(n) converges to U [− 1

2 ,
1
2 ].

Similarly, we can prove the case of H ∈ (0, 12 ). Because h
H− 1

2

0 > 0, h
H− 1

2

i <
0 for i > 0, we have

rh
H− 1

2

0 + · · ·+ h
H− 1

2

r > 0 (21)
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for r ∈ N and thus

limr−>∞ |ψB,0 + ...+ ψB,r|
= limr→∞

∣

∣

∣rh
H− 1

2

0 + (r − 1)h
H− 1

2

1 + · · ·+ h
H− 1

2

r

∣

∣

∣

> limr→∞
∣

∣

∣
h
H− 1

2

0 + ...+ h
H− 1

2

r

∣

∣

∣
= 0 (22)

Again Lemma 1 applies.

From Eq.(19), the limit correlation R̄ ((e(n), e(n+ k)) can be written as

R̄ ((e(n), e(n+ k))

= 1
4 − Ē (〈δ(n)〉) + Ē {〈δ(n)〉〈δ(n + k)〉} (23)

where the limit mean Ē (x(n)) = limN→∞
1
N

∑N
n=1 E (x(n)).

For k 6= 0, (〈δ(n)〉, 〈δ(n+k)〉) converges in distribution to a random variable
which is uniformly distributed in [0, 1)×[0, 1); thus we have Ē (〈δ(n)〉, 〈δ(n + k)) =
∫ 1

0

∫ 1

0 uvdudv = 1
4 .

For k = 0, we have Ē
(

〈δ(n)〉2
)

= 1
3 and R̄ (〈δ(n)〈δ(n)) = 1

3 .
By (23), we have

R̄ ((e(n), e(n+ k)) =

{

1
12 , k = 0
0 , k 6= 0

(24)

Thus, the normalized quantization error is white and is asymptotically un-
correlated with the output of the quantized signal. Therefore, we prove the whole
conclusion.

4 Some Simulation Results

Fig.1 shows a typical Power Spectral Density (PSD) for the quantization error
of a 1D quantized fBm signal, which indicates that the normalized quantization
error is indeed white.

Fig.2 shows the PCA eigen-spectrum of the original fBm signal, the quan-
tized fBm signal and the quantization error. According to the results given
in [20]-[21], when the sampling data length K is a sufficiently large constant,
the PCA eigenvalue spectrum of the auto-correlation of a 1D fBm process with
Hurst exponent H decays as a power-law

λ̃k ∼ k−(2H+1), k = 1, ...,K (25)

It is also proven in [20]-[21] that the numerical eigen-spectrum of a white
noise should be a straight line with slope α0 ≈ 0 in the log-log scale (the
slope is not strictly 0 because of the finite sampling length effect). Moreover,
when the 1D fBm signal is corrupted with additive white noise and the SNR is
large enough, the eigenvalue spectrum of the corrupted signal crossovers from
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Figure 1: The PSD estimate for the quantization error of a 1D quantized fBm
signal, where H = 0.2, the quantization scale is ∆ = 1. The PSD is estimated
via periodogram method.

α1 = −(2H + 1) to α0. Comparing Fig.2 to the simulation results provided in
[20]-[21], we can see that under high resolution, the quantization error behaves
exactly like a certain additive white noise.
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Figure 2: PCA eigen-spectrum of the auto-correlation of a standard fBm signal,
its corresponding quantized signal, and the quantization error, where H = 0.8,
and the quantization scale is ∆ = 1.
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