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System Identification With Sparse Coprime Sensing
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Abstract—Given a continuous time LTI system with impulse
response � �, it is shown that the uniformly spaced samples

� � can be identified for any chosen spacing by using an
impulse train input with an arbitrarily small rate � and
sampling the system output with an arbitrarily small rate � ,
provided and are coprime. This idea, referred to here as the
sparse coprime sensing method for system identification, is closely
related to well known results in multirate signal processing. It
is shown that the problem can be related to the identification of
a decimation filter from input-output measurements. It is also
shown that the problem is equivalent to the identification of a
discrete time LTI system from a knowledge of the full
rate input and output vector sequences.

Index Terms—Coprime sampling, sparse sampling, system iden-
tification.

I. INTRODUCTION

C ONSIDER Fig. 1 where a sequence with sample
spacing is transmitted through a continuous time LTI

system with impulse response . The system output is given
by1

(1)

Imagine this output is sampled with spacing to obtain

(2)

where . Thus the discrete-time equivalent of
the system in Fig. 1 is an LTI system with impulse response

. Since , it is clear that can
be identified from a knowledge of appropriately designed
(e.g., ) and .

In this letter, we show that the sampled impulse response
, with sample spacing , can be identified by transmit-

ting an impulse train
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1Here the notation��� stands for the discrete to continuous converter which
converts ���� into an impulse train � ��� � ���������	 �.

Fig. 1. Pertaining to the system identification problem.

Fig. 2. Input stream transmitted at a lower rate ��
	 for system identification.
The receiver also performs undersampling by a factor of � .

Fig. 3. Locations of (a) the channel samples at the higher rate, and (b), (c) input
symbol stream and received output samples at a much lower rate.

at an arbitrarily small rate and taking samples of the
received signal at another arbitrarily small rate . (The
adjective “arbitrarily small” is used here because and can
be arbitrarily large.) This is schematically shown in Fig. 2. We
will see that such identification is possible if and only if the
integers and are coprime. We shall call this the coprime
sensing method for system identification. Fig. 3 shows the time
scales involved for the input pulse train, the output samples, and
the desired impulse response samples .

The proof of the main result, presented in Section II, is based
on a simple connection to fractional sampling rate alteration
systems in multirate signal processing theory [5]. The connec-
tion to polyphase representations is described in Section III,
which shows in particular that the problem can be reduced to
that of identifying decimation filters from input/output measure-
ments. Finally, in Section IV we show that the problem is equiv-
alent to the identification of a discrete time MIMO transfer ma-
trix of size from a knowledge of the full rate input and
output vector sequences.

It should be noticed here that coprime sampling has in the past
been used in an entirely different context, namely, for identi-
fying sinusoids in noise (see references in [6]). Coprime pulsing
has also been employed for the resolution of range ambiguities
in radar [4].

1070-9908/$26.00 © 2010 IEEE



824 IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 10, OCTOBER 2010

Fig. 4. Discrete time representation of the system sensing scheme of Fig. 2.

II. IDENTIFYING THE LTI SYSTEM

The signal in Fig. 2 can be expressed as

(3)

so that the -fold undersampled version takes the form

(4)

Defining the desired-rate samples of the system

(5)

as before, the discrete time model for the system of Fig. 2 is
given by

(6)

This equation can be interpreted using standard multirate signal
processing notations as shown in Fig. 4. Here and
represent the -fold decimator and -fold expander respec-
tively, as defined in [5]. Thus the problem of identifying the sam-
ples is equivalent to identifying the impulse response

of the digital filter in Fig. 4 from a knowledge of
the output , in response to an appropriately designed input

.
Need for Coprimality: We claim that the identification of

described above cannot be done when and are not
coprime. To see this, assume that and have the greatest
common factor (GCD) . Then from (6) we have

(7)

for appropriate integers . Those samples of for
which is not a multiple of are not present in this equation,
and cannot therefore be identified from a knowledge of and

. Thus, unless and are coprime (i.e., ), there
will always be a subset of samples that are not “observ-
able” at the output, and cannot therefore be identified.

Assume therefore that and are coprime. The argument
of in (6) has the form . By Euclid’s theorem
[1], [2], coprimality implies that every integer can be expressed
in the above form, for an appropriate integer pair , say,

:

(8)

Thus if were the only nonzero input sample, then
, from which can be identified. This is the intu-

itive reason why is identifiable from and when

and are coprime. To develop a formal proof we will as-
sume that is FIR:

(9)

In this case, we can design with its nonzero samples suf-
ficiently spaced apart, so that any output sample is affected by
at most one input sample. This is the idea behind the proof of
the main result given below:

Lemma 1. LTI System Identification: Consider the scheme of
Fig. 2 where an input stream is transmitted with uniform
spacing and the LTI system output is uniformly sampled
with spacing to obtain . Assume that the sampled im-
pulse response is FIR. Then can be
identified from the received signal (for an appropriately
designed finite duration input ) if and only if and are
coprime.

Stated equivalently, the FIR system in Fig. 4 can
be identified from a finite-duration observation of for
appropriately designed input , if and only if and are
coprime.

Proof of Lemma 1: We have already shown above that it is
necessary for and to be coprime. So assume coprimality.
Then any integer can be expressed as in (8), which can be
rewritten as

for any integer . Thus, for fixed and the output
has the term . For each suppose we have
identified one initial pair such that (8) holds. Suppose
we modify to

for some set of integers , and construct an input which
is nonzero only at the points . Then the
output at is given by

(10)

Note that in the right hand side is independent of . Since
the initial set is fixed and the above equation holds for
any choice of the integers , we can always choose
them such that

where is the order of . Then cannot
be nonzero for more than one value of in (10). Hence

Since and are known, we can identify from
this, for each in .
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Fig. 5. Example where the system � ��� is a narrow pulse.

The following remarks help to develop further intuition:
1) Bandlimited Channel: When is a bandlimited

channel with Nyquist rate , the preceding lemma shows
that the input pulse train, and the output sampling rate, can both
be at rates that are arbitrarily smaller than the Nyquist rate.

2) Case of Conventional Sampling: If the input signal is
, then since , the only way to ob-

tain the samples is to choose the obvious sampling rate
(i.e., set ). In this case the “rate” of the input is

zero (since there is only one sample). So this is an extreme case
where and .

3) Case Where is a Narrow Pulse: Next consider the
example where for , and zero oth-
erwise. So is a very short pulse, and .
So the system to be identified has only one nonzero
sample. The system output in Fig. 2 is therefore a train
of narrow pulses separated by . See Fig. 5. If this is sampled
at spacing as demonstrated in the figure, then the sampler’s
impulse train overlaps with the output pulse train exactly
at one point, namely (since and are coprime). So

from which can be identified
trivially.

III. POLYPHASE VIEW OF SYSTEM IDENTIFICATION

BASED ON COPRIME SAMPLING

We now give a second view of identifiability of in
Fig. 4, based on the polyphase approach [5]. When and are
coprime, the discrete time system in Fig. 4 can be redrawn as in
Fig. 6 where are the polyphase components of
(with some delays inserted). This is a well-known result in mul-
tirate signal processing theory (see [5, Sec. 4.3.3]). If
is FIR, all the components are also FIR. In this equiva-
lent structure, is the interleaved version of the signals

. Thus knowing for all is equivalent to knowing
for all and . Identifying from a knowledge of

and is therefore equivalent to identifying each com-
ponent from a knowledge of and . We will
now argue that it is possible to design the signal such that,
from a knowledge of we can indeed identify , when
it is FIR. For this we first make a simple observation about dec-
imation filters.

Lemma 2. Identifying a Decimation Filter: Consider the
-fold decimation filter shown in Fig. 7 and assume

is FIR. Then there exists a finite duration input such
that can be identified from observation of a finite duration
portion of the output .

Fig. 6. Polyphase representation of Fig. 4.

Fig. 7. Decimation filter.

The intuition behind this is as follows: if we apply the input
in Fig. 7, then , which allows us to

identify a subset of the samples of . If we apply the shifted
input instead, then we can similarly identify

for all . But if we apply then the
responses and overlap in time and cannot
be separated. By leaving enough room between nonzero input
samples, such overlap can be avoided.

Proof of Lemma 2: Suppose we design such that it is
nonzero for specific values of and zero elsewhere. More
specifically we choose

(11)

With expressed in the polyphase form
, the decimated output has -transform

(12)

(13)

We now observe that

(14)
for . The preceding expression for therefore
simplifies to

(15)
Equivalently in the time domain:

(16)

If is FIR then so are the polyphase components .
So we can always choose the delays such that the impulse
responses on the preceding right hand side do not
overlap. Thus, from a measurement of , the components

can be identified by inspection, and can therefore
be identified.

Returning to Fig. 6 we now see that there exists an input
such that can be identified from , for each .
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Fig. 8. Further development of the polyphase form in Fig. 6.

From the proof of Lemma 2 we see that the choice of itself
depends on (the lengths of its polyphase components in
particular). But it is easy to see that there exists an which
works for all . For this, observe that the integers in
the proof of Lemma 2 need only satisfy the following:

(17)

where are the lengths of the FIR filters . If we redefine
in (17) to be

(18)
then the above set , will work for all the decimation
filters in Fig. 6. Summarizing, we see that there exists such
that from a measurement of we can identify all the FIR
filters in Fig. 6. This gives a second proof of Lemma 1.

IV. RELATION TO MIMO SYSTEM IDENTIFICATION

Suppose each filter in Fig. 6 is expressed in the
polyphase form

(19)

Defining the matrix with elements
, and using an appropriate noble identity [5], we can

then redraw the system of Fig. 6 as in Fig. 8.
In this figure is an interleaved version of and simi-

larly is an interleaved version of . Thus, a knowledge
of for all is equivalent to knowledge of for all ,
and similar remarks hold for and . Since the system
in Fig. 8 is nothing but an equivalent redrawing of Fig. 4 when

and are coprime, we conclude therefore that the identifica-
tion of the scalar LTI system from a knowledge of is
equivalent to the identification of the MIMO system from

a knowledge of its vector-output sequence . Summarizing,
we have shown the following.

Lemma 3: Consider the system identification problem in
Fig. 2 where we seek to identify the samples by in-
putting an impulse train at the low rate and sampling
the system output at the low rate . When and are
coprime integers, this problem is equivalent to identifying a

discrete-time MIMO LTI system from its output
(in response to an appropriately designed input .)

Notice from Fig. 8 that which
represents MIMO convolution. The preceding lemma therefore
shows that identification of from the sparse input and
sparse output samples of Fig. 2 is equivalent to a MIMO decon-
volution problem.

V. CONCLUDING REMARKS

The results presented here are quite basic, and remain valid in
any situation where a linear time invariant system has to be iden-
tified by “sounding out” the system with an impulse train. Ap-
plications of the result include channel identification, in which
case additive channel noise should also be taken into account.
Another potential application is in the identification of target
signature in an active sensing scenario. This problem is more
sophisticated because of the presence of signal driven interfer-
ence such as clutter. It will be interesting to explore these appli-
cations in greater detail. Note that the proofs of Lemmas 1 and
2 are constructive in the sense of showing how the input
should be chosen. However these proofs do not indicate what
the best choice of the input is. For example, for fixed and

, what is the shortest which will identify the system? In
the presence of additive noise at the output of , what is the
best choice of subject to some constraint such as a total
power constraint or peak power constraint? It appears that the
deconvolution formulation offered by Lemma 3 is well suited
to answer these questions. Further work along these directions
will be of interest.
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