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Von Mises-Fisher Models in the Total

Variability Subspace for Language Recognition
Ignacio Lopez-Moreno*, Daniel Ramos, Javier Gonzalez-Dominguez

and Joaquin Gonzalez-Rodriguez

Abstract

This paper proposes a new modelling approach for the Total Variability subspace within a Language

Recognition task. Motivated by previous works in directional statistics, von Mises-Fisher distributions

are used for assigning language-conditioned probabilities to language data, assumed to be spherically

distributed in this subspace. The two proposed methods use Kernel Density Functions or Finite Mixture

Models of such distributions. Experiments conducted on NIST LRE 2009 show that the proposed

techniques significantly outperform the baseline cosine distance approach in most of the considered

experimental conditions, including different speech conditions, durations and the presence of unseen

languages.

EDICScategory: SPE-RECO, SPE-LANG

Index Terms

Finite Mixture Models, Kernel Density Function, Language Recognition, Total Variability, Von Mises-

Fisher.

I. INTRODUCTION

The use of acoustic systems based on Factor Analysis (FA) has become the state of the art in language

and speaker recognition due to its strength in dealing with variability, representing either nuisance or

useful information [1] [2] [3]. In the initial FA approach, the latent factors that model the undesirable

Copyright (c) 2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the ATVS Biometric Research Lab., Universidad Autónoma de Madrid, Madrid, Spain, contact: (see

http://atvs.ii.uam.es/). Manuscript submitted May 5, 2011; This research was supported by the Ministerio de Ciencia e Innovación

under FPI grant TEC2009-14719-C02-01 and cátedra UAM-Telefónica.
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acoustic variability are estimated and compensated from the original utterance representation as a super-

vector [2]. A type of high-dimensional vector obtained from the parameters of a Gaussian Mixture Model,

which is generated using the acoustic features of an utterance (e.g. MFCC). In addition, newer successful

FA approaches have shown that the so-considered useful information embedded in the super-vectors, i.e.

the variability generated by different languages, can also be represented by a small number of latent

variables [1]. Furthermore, they can be thought as derived front-ends that use vectors of latent variables

as utterance samples.

Currently, the speaker recognition community is focused on a particular kind of FA-based front-end,

known as Total Variability Subspace [1]. In this case, the vectors of latent variables obtained from the

super-vectors, which are denoted by identity vectors (i-vectors), do not stand for an specific identified

source of information. However all the variability presented in the data is modelled together and regardless

of its origin. It may be argued that during this process, part of the useful information could be lost.

However, unlike previous FA approaches, a robust estimation of the space of the i-vectors can be achieved

using sufficient number of latent variables and a representative set of background data, which does not

need to be class labelled beforehand. The result is that Total Variability works as a robust dimensionality

reduction model. Target classes (e.g. languages) are spaced out in a further disentangling stage using

classical discriminant techniques, such as Linear Discriminant Analysis (LDA), typically together with

Within Class Covariance Normalization (WCCN) [4] to normalize the distribution of vectors of each

class.

In this paper we propose a probabilistic framework for scoring utterances mapped to their own

disentangled i-vectors. It is motivated by the good performance of the typically used cosine distance

score, which overcomes other more complex approaches (e.g. SVM language models) [1]. In our work,

the cosine score is understood as an approximation to a univariate directional kernel density function

(KDF) that models the language i-vectors [5]. However we argue that it might be unsuitable for learning

complex distributions. This is significant in language recognition, where unlike in speaker recognition, it

is possible to manage hundreds of utterances for training a single language.

The proposed front-end assigns densities using von Mises-Fisher (vMF) distributions [7], which have

been proved to be flexible in modelling directional data in an analogous manner as Gaussians distributions

for non-directional data. Using vMF distributions, two approaches are implemented here: vMF Kernel

Density Functions (vMF-KDF) and vMF Mixture Models (vMF-MM). Likelihoods generated in either

case are normalized to generate scores of language membership. Moreover, this front-end can be general-

ized to the case of non-directional data via Spherical Normalization [8], which ensures the directionality
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of the data.

This paper is organized as follows. Sec. II provides a probabilistic interpretation of the typically used

cosine distance and compares it with the vMF distribution. Sec. III reviews the formulation of the vMF

distribution and its applicability for vMF-KDF and vMF-MM. Experiments and results are presented in

Sec. IV. Conclusions and future work can be found in Sec. V.

II. COSINE KERNEL DENSITY FUNCTION

Consider a Total Variability front-end where utterances are represented by d-dimensional i-vectors [1].

In this domain, a particular language, labelled by c, is typically represented by the centroid mc ∈ Rd, of

the nc available i-vectors for that language as

mc =
1

nc

nc∑
i=1

xi,c

where {xi,c ∈ Rd|1 < i < nc} is the i-th i-vector of the language c (i-vectors are hereafter referred as

samples). Using the popular cosine kernel, the similarity of mc with a test sample xt ∈ Rd is given by

the cosine of the angle θ formed between them.

Kcos(xt,mc) = cos θ = 〈 xt
‖xt‖

,
mc

‖mc‖
〉 (1)

Kcos(x,mc) only depends on θ and thus, it can be considered a directional kernel. Samples can be

thought as directions that depart from the origin of Rd and they are frequently expressed in terms of unit

vectors (u/‖u‖) or points on the surface of a hyper-sphere Sd−1 (Fig. 1).

Lets denote by x ∈ Rd, such that ‖x‖ = 1, a continuous random variable on the Sd−1 hypersphere.

Under some slight modifications Kcos(x,mc) can be thought as a directional Kernel Density Function

(KDF) assigned to the distribution of x given each class on Sd−1 (Fig. 1) [6].

p̂(x|ϕc) =
π

4
Kcos(x,mc)1{Kcos(x,mc)>0}

where 1{u} is the characteristic function, defined as 1 for true values of u and 0 otherwise. ϕ refers to

the model parameters, represented by the class centroid ϕc ≡ mc for the cosine KDF. Note that p̂(x|ϕc)

is a valid probability density function (p.d.f) since i)p̂(x|ϕc) > 0 and ii)
∫
p̂(x|ϕc)dx = 1 [7]. Despite

its simplicity and efficiency, the cosine KDF can be non-representative for complexly distributed data.

This motivates the study of p.d.f. more fitted to the i-vectors of each language.
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Fig. 1. Example of directional data distribution. The XY-plane shows the concentration of unit vectors xi in S1 for the class c,

together with the class centroid mc. The Z-plane is the multivariate distribution p(x|ϕc) of the class vectors along θ ∈ [0, 2π),

together with the estimated distribution. p̂(x|ϕc) using the cosine kernel density function.
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Fig. 2. Estimated value of probability p(x) on S1 for (left) the cosine distribution and (right) the von Mises-Fisher distribution

for different values of the concentration parameter κ.

III. VON MISES-FISHER MODELS

Directional data modelling has been previously developed in the field of directional statistics for its

applications in several other fields. Some of them includes text-categorization [9], physics [10] and

speaker clustering [11]. For many of these fields, a common successful alternative for the cosine KDF

is the usage of von Mises-Fisher distributions (vMF). These two distributions are compared in Fig. 2.

In the following subsections we present a more detailed description of the vMF-based p.d.f. assignation

methods used in the proposed approaches.

A. The von Mises-Fisher distribution

The d-dimensional von Mises-Fisher distribution of a random variable x ∈ Sd−1 is given by
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f(x,µ, κ) = cd(κ)eκµ
T x (2)

being cd(κ) a normalization constant denoted by

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)

Iν is defined as the modified Bessel function of the first kind and order ν [12]. The parameters µ ∈ Sd−1

and κ ∈ R are denoted respectively as the mean direction and the concentration parameter. While µ

stands for the direction that maximizesf(x,µ, κ), κ measures the sparseness degree of the distribution

(rotationally symmetric about µ). Particularly, f(x,µ, κ) is a uniform distribution for κ = 0 and a point

distribution for κ =∞ (Fig. 2). Hence, the parameters µ and κ are analogue to the mean and the inverse

of the variance in a Gaussian distribution. Also, likewise the Gaussian distribution in Rd, vMF is the only

distribution in Sd−1 that maximizes the entropy given the first and second order moments. This means

that under some considerations [7], vMF is the closest distribution to any predetermined one on Sd−1.

B. Generative Models in Directional Data

In the problem of assigning a probability density function to a random variable assumed to fit to a

complex multimodal distribution, most common approaches consider using one of two methods [5]: i)

KDF, sum of distributions that assign local values of p.d.f. p̂(x|ϕ) in the neighborhood of each training

sample and ii) finite mixture models, formed by a set of distributions whose parameters are assumed to

be learnable from the data, often under a Maximum Likelihood criterion. Concerning directional statistics,

the vMF distribution is typically used for both types of assignments of p.d.f. p̂(x|ϕ) on Sd−1. In both

cases, the predicted likelihood can be computed as a weighted sum of a set of vMF distributions given

by

p̂(x|ϕ) =

M∑
m=1

wmf(x,µm, κm) (3)

This equation can be compactly represented by the collection of tuples ϕ(wm,µm, κm)Mm=1, which

defines a vMF model. Following subsections describe the techniques used to obtain ϕ in each of the

proposed approaches. Note that the class model ϕc characterizes the target language given by c by

p̂(x|ϕc). In this work, the language membership score of a testing utterance xt over the class c is

computed according to
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score(c, t) = ln p̂(xt|ϕc)− ln
∑
j 6=c

p̂(xt|ϕj)

being j is a positive real valued random variable for the set of J target languages {j ∈ 1 . . . J}.

C. The vMF Kernel Density Function

Consider a set of samples X = {xi ∈ Sd−1|1 ≤ i ≤ n} and the vMF-based kernel function defined by

KvMF (a,b) = f(a,b, κ). The likelihood predicted by a vMF Kernel Density Function (vMF-KDF) with

respect to x is defined by

p̂(x|ϕ) =

n∑
i=1

wiKvMF (x, xi)

It can be thought as a collection of n unimodal e independent vMF distributions centered at each sample

xi. Individual likelihoods are added up including a common weight term wi = n−1, which normalizes

the generated function to a valid p.d.f. The vMF-KDF system can be described as a non-parametric (M

variable) vMF model

ϕ(wm,µm, κm)Mm=1 = ϕ(n−1, xi, κ)ni=1

D. The vMF Mixture Model

Given a training set X , the Maximum Likelihood (ML) estimation using vMF distributions aims

to obtain the vMF model ϕ(ŵm, µ̂m, κ̂m)Mm=1 that maximizes the log likelihood over X , given by

ln P̂ (x|ϕ) =
∑n

i=1 ln p̂(xi|ϕ), under the constrains ‖µ̂‖ = 1 and κ̂ ≥ 0 [9]. According to the number of

mixtures, two cases can be distinguished: unimodal (M = 1) and multimodal (M > 1) ML estimation.

1) ML in Unimodal vMF-MM: In [9] it is shown that the analytical solution of the unimodal ML

estimation exists and can be computed, in terms of r =
∑n

i=1 xi, as follows

µ̂ = r · ‖r‖−1 (4)

Id/2(κ̂) · Id/2−1(κ̂)−1 = r̄ (5)

being r̄ = ‖r‖/n for M = 1. Since κ̂ results from the ratio between two Bessel functions of consecutive

order, it has no deterministic solution. Several methods exists for its approximation, among which, we

found reliable the approximation of small values of d and large values of κ given in [7]
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κ̂ ≈ d− 1

2(1− r̄)
(6)

2) ML in Multimodal vMF-MM: Unlike the previous case, for multimodal vMF-MM models there is

not an analytical solution for the ML estimation which needs to be iteratively estimated, commonly using

the Expectation Maximization (EM) algorithm [9]. It iterates between E-step and the M-step according

to:

(E-step)

• Compute mixture occupation probabilities for each mixture m and training sample xi

g(m, xi) =
wmf(xi,µm, κm)∑M
k=1wmf(xk,µk, κk)

(M-step)

• Update ŵm using the Baum Welch 0-order statistics

ŵm =
1

n

n∑
i=1

g(m, xi)

• Update µ̂m using eq. (4) for r = rm (1st order statistics)

rm =
1

n

n∑
i=1

xig(m, xi)

• Update κ̂m as in eq. (5) and (6) for r̄ = r̄m

r̄m = ‖rm‖ · (nŵm)−1

IV. EXPERIMENTS

A. Experimental Setup, Database and Protocol

Language recognition systems based on the approaches presented in the above sections have been

tested over the 2009 edition of the biannual Language Recognition Evaluation (LRE’09) carried out by

the National Institute of Standard and Technology (NIST) [13]. NIST LRE’09 evaluation data includes

test segments of 3, 10 and 30s length, belonging to 40 different languages divided as 23 target and 17

non-target languages. Results presented in this work refer to both closed and open-set conditions. We

refer to closed-set as the task when only target languages are included in the test trials set, and to open-set

when other non-target languages (unknown to participants) are also included. More detailed information

can be found in the LRE’09 evaluation plan [13].
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TABLE I

CLOSED-SET RESULTS IN NIST-LRE 09

min Cavg. x 100 mean EER

30s 10s 03s 30s 10s 03s

Cosine Kernel 4.64 8.76 18.54 4.99 9.07 19.05

Cosine KDF 4.99 9.00 18.53 5.38 9.36 18.96

vMF KDF 3.42 7.74 18.40 3.69 8.03 19.19

vMF MM 3.32 7.61 18.40 3.59 7.84 18.70

Data used with background purposes was obtained from a development set provided by NIST to all

LRE’09 participants. It included manually and automatically labelled segments of the two types of audio

considered in the LRE’09 evaluation: conversational telephone speech and telephonic speech belonging

to internet broadcast news. An average of ∼ 400 utterances per language were extracted from long

(minimum length 30s.) segments. Later, utterances were mapped into their own i-vectors using a Total

Variability Subspace approach with 400 latent variables and an initial UBM model of 1024 Gaussians

[1]. Using LDA, i-vectors were finally projected into the d = 21 dimensional disentangled space used

to develop the proposed techniques. More details about the data partition, parametrization and UBM

modelling can be found in the authors LRE’09 participation presented in [3].

The algorithm in the vMF-MM system is initialized using binary splitting for assigning vectors to each

cluster, until M clusters are found. Distances are computed according to (2) and centroids are computed

as in (4) for κ = 16. Then, a general model is trained using all the available training samples, five EM

iterations and adapting mean directions, weights and concentrations parameters. Three additional iterations

are used to adapt this general model to each of the target languages. In this case only weights and mean

directions were updated, but not the concentration parameters that we found to result in overfitting given

the available data. Regarding the systems parameters tuning, the Bayesian Information Criterion (BIC)

revealed that the optimal values of M is 1 and 2, for respectively, 17 and 5 of the considered target

languages. For the vMF-KDF system, κ was empirically set to 16.

B. Results

A wide set of experiments covering both closed and open-set conditions has been carried out, summa-

rized in Table I and Table II for the two performance metrics considered: i) min Cavg, which defines the

averaged minimum cost of taking bad decisions and ii) mean EER, the averaged Equal Error Rate (EER)
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TABLE II

OPEN-SET RESULTS IN NIST-LRE 09

min Cavg. x 100 mean EER

30s 10s 03s 30s 10s 03s

Cosine Kernel 5.44 9.59 19.25 5.62 9.75 19.55

Cosine KDF 5.68 9.81 19.19 5.94 10.00 19.52

vMF KDF 4.90 9.21 19.44 4.89 9.29 20.06

vMF MM 4.96 9.15 19.44 4.95 9.18 19.63

among the target classes. Both are reliable metrics to evaluate the systems discrimination capabilities.

At a first glance of Table I, two main facts can be observed. First, both systems based on vMF

distributions significantly outperform the typically used cosine-based matching presented in [1]. This

confirms that vMF distributions are suitable for assigning distributions in the i-vector domain. Notable is

the 28% of improvement in the min Cavg and mean ERR achieved for the 30s closed-set condition using

the vMF-MM system. Second, since samples derived from utterances longer than 30s were only used in

training, it can also be observed that the vMF-based approaches are slightly sensitive to the data mismatch

when models are trained with utterances having different lengths than test segments. Despite the relative

performance with the cosine-based approaches decreases, the vMF-based approaches still achieves best

results for all the closed-set conditions. Particularly, the vMF-MM system outperforms other systems in

all cases.

Table II shows the performance improvement of the proposed techniques with the presence of unseen

languages. We observe a slight deterioration generated by the further introduced mismatch between

training and testing data sets. It could be alleviate using sufficient language variability in the training

set. In the worst presented scenario, 3s open-set condition, the cosine-based approaches achieve best

performances while small degradation is observed for the vMF-based systems. Moreover, it can be

observed that as the mismatching decreases (30s and 10s open-set conditions) the vMF-based system

still achieve best results.

V. CONCLUSIONS

We present a new modelling approach for learning distributions of disentangled i-vectors for language

recognition. The approach is based on the use of von Mises-Fisher distributions. These are directional

distributions suited to directional data such as the i-vectors. vMF distributions are exploited using two
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different approaches: Kernel Density Functions (vMF-KDF) and Finite Mixture Models (vMF-MM).

Experiments are carried out over the NIST LRE’09 evaluation and shows that the vMF-MM systems

outperforms the typically used cosine distance approach in most of the cases. Particularly, a 28% of

improvement is achieved for the 30s closed-set condition.
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