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Is Uniqueness Lost for Under-Sampled
Continuous-Time Auto-Regressive Processes?

John Paul Ward, Hagai Kirshner, and Michael Unser, Fellow, IEEE

Abstract—We consider the problem of sampling contin-
uous-time auto-regressive processes on a uniform grid. We
investigate whether a given sampled process originates from
a single continuous-time model, and address this uniqueness
problem by introducing an alternative description of poles in
the complex plane. We then utilize Kronecker’s approximation
theorem and prove that the set of non-unique continuous-time
AR(2) models has Lebesgue measure zero in this plane. This is
a key aspect in current estimation algorithms that use sampled
data, as it allows one to remove the sampling rate constraint that
is imposed currently.

Index Terms—Approximation theory, sampling theory, sto-
chastic processes.

I. INTRODUCTION

C ONTINUOUS-TIME ARMA (Auto Regressive Moving
Average) processes are widely used in control theory and

in signal processing and analysis. Typical examples of applica-
tions are system identification and adaptive filtering [1], [2]. as
well as speech analysis and synthesis [3]. In practice, the avail-
able data is discrete and one is required to estimate the under-
lying continuous-domain parameters from sampled data.
Focusing on direct estimation approaches, they often as-

sociate the discretization process with loss of information.
This means that two continuous-time processes can result in
two equivalent discrete-time processes that share the same
autocorrelation sequence. In order to avoid such ambiguity,
some of them assume a relatively high sampling rate [4]–[14].
This non-uniqueness property originates from the fact that the
power spectrum function of a continuous-time ARMA model is
not band-limited, and from the fact that the discrete-time pole
is invariant to shifts of the continuous-time pole in the
complex plane [10].
Nevertheless, it seems that the special structure of the con-

tinuous-time ARMA power spectrum function has been over-
looked within this context. The continuous-time power spec-
trum is a rational function of two symmetric polynomials in the
Laplace domain, and it becomes a rational function of yet an-
other two symmetric polynomials in the -domain upon sam-
pling. This mapping could potentially be invertible. Indeed, the

Manuscript received November 01, 2011; revised January 10, 2012; accepted
January 18, 2012. Date of publication January 23, 2012; date of current ver-
sion February 09, 2012. This work was supported in part by the Swiss Na-
tional Science Foundation under Grant 200020-121763 and by the ERC Grant
ERC-2010-AdG 267439-FUN-SP. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Saeid Sanei.
The authors are with EPFL, STI, Lausanne CH-1015, Switzerland.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2012.2185695

discrete-time poles are invariant to certain shifts in the complex
plane, but the discrete-time zeros are not.
Using the structure of the continuous-time power spectrum to

analyze uniqueness of continuous-time AR (Auto Regressive)
models is important because it could remove the sampling rate
constraint used in current estimation algorithms. This could be
instrumental to direct estimation methods that restrict the sam-
pling interval value from being too large, as in the preceding
references. Continuous-time AR(1) and AR(2) models are of
central importance in describing a general continuous-time AR
model of simple poles. We focus on the latter and consider
the problem of sampling a continuous-time AR(2) process on a
unit-interval grid. The autocorrelation sequence of the sampled
process is then given by the values of the original autocorrela-
tion function on the very same grid. The question we are raising
here is whether or not the sampling process is a one-to-one map-
ping of the continuous-time model to its discrete-time counter-
part, and we aim at identifying the set of parameters for which
the sampling operator is invertible. We address this problem by
introducing an alternative description of the continuous-time
AR model in the complex plane and by utilizing Kronecker’s
approximation theorem for describing uniform sampling of pe-
riodic functions.

II. ALTERNATIVE DESCRIPTION OF POLES

The bilateral Laplace transform of a scalar function is

(1)

where takes complex values that satisfy
. The Fourier transform of this function is .

The complex conjugate of is . In this work, is an auto-
correlation function and is the corresponding power spec-
trum. A continuous-time AR(1) model is described by two pa-
rameters: the single real pole and the intensity of innovation
process. The pole should be strictly negative. A continuous-time
AR(2) model can be described by three parameters: the inten-
sity of the innovation process and two possibly complex poles.
If one of the poles is real then so is the other. If one of the poles
is complex then the other is its complex conjugate. In any case,
both poles must have strictly negative real values. The coupling
between the two poles prevents them from being described by
two arbitrary points in the complex plane. We therefore sug-
gest an alternative description that requires only a single point
(Fig. 1). Let be a complex number. Then

(2)
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TABLE I
AN ALTERNATIVE DESCRIPTION OF POLES IN THE COMPLEX PLANE FOR A CONTINUOUS-TIME AR(2) MODEL

Fig. 1. An alternative description of poles for a continuous-time AR(2) process
in the complex plane. The standard description is shown at the top. The red ‘x’
marks represent a process having two real values , . The
blue circle represents a process having two multiple poles at . The
two processes share a single pole at and the corresponding location is
re-used in the standard description. Such a re-use does not occur in the proposed
alternative description, as depicted at the bottom.

We assign a point in to represent a continuous-time process
with a single multiple real pole, to represent two distinct real
poles, and to represent two complex conjugate poles. Any
point in defines a valid continuous-time
AR(2) process as shown in Table I, and all possible contin-
uous-time AR(2) processes are represented by the points in .
Such a description allows us to associate a single point in the
complex plane with a single continuous-time AR(2) process,
and this property is useful for assigning a measure to the col-
lection of non-unique processes. In the standard representation,
such an analysis is impeded by the fact that any given point
on the real axis is used in the description of multiple processes
(Fig. 1).

III. THE PROBLEM

Definition 1: Let and . Then, is a
vector of parameters for a continuous-time AR(1) model.
Definition 2: Let and . Then, is a

vector of parameters for a continuous-time AR(2) model.
Definition 3: and are equivalent if

, , according to Table I. If
has no equivalent , then it is unique.
We are concerned with identifying the set of unique contin-

uous-time AR models and with the construction of equivalent
vectors of parameters. For example, the continuous-time AR(2)

TABLE II
POSSIBLE CASES OF EQUIVALENT PAIRS IN

processes are equivalent for . On
the other hand, every continuous-time AR(2) processes

is unique.

IV. UNIQUENESS OF SAMPLED AR(1) AND AR(2) PROCESSES

Theorem 1: Every continuous-time AR(1) process is unique.
Proof: The autocorrelation function of a continuous-time

AR(1) model is . The equivalence property
translates in this case to . This is impossible
if the two functions decay at different rates.
Our approach to the AR(2) problem relies on the different

forms of the autocorrelation function of Table I. There are six
pairs that should be considered when determining uniqueness
(Table II), and we examine each one of them separately.
Case A: Let . The equivalence property translates

in this case to the following equation

More generally

(3)

As , the two exponential terms have different rates of
decay. Therefore, the sampled versions of such functions cannot
be made equal by adjusting the scalars .
Case B: Let and . The equivalence property

translates in this case to the following linear combination

Alternatively

(4)

If , then the two exponential functions need to
cancel a monotonic linear function. Each of them is either de-
caying or growing and their sum cannot cancel the linear term.
A similar argument applies to the case where one of the expo-
nentials becomes a constant, e.g. .
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Fig. 2. Kronecker’s approximation theorem applied to a periodic function. The
period of the function is and we sample it on a unit-interval grid. The values
at the sampling points are given by the values of the function at locations
where . According to the theorem, if is irrational, then the
sequence is dense in .

In the following, denotes the distance to the greatest in-
teger smaller than or equal to .
Theorem (Kronecker’s Approximation Theorem [15]):
1) If the real numbers are linearly independent
over , then for real and there are arbitrarily
large real for which

(5)

2) If the numbers are linearly independent
over , then in part 1, can be taken to be an arbitrarily
large integer.

Case C: Let and . Similar to the previous
case, we have

It might happen that the sampled version of the periodic term
will converge to zero at a rate that would compensate for the ex-
ponential . If the compensationmatches the linear term

, then and would be an equivalent pair. This, how-
ever, cannot happen. If , then the exponential term
is decaying, hence it cannot be canceled by the linear term. If

then we examine the period . If is irra-
tional, then by Kronecker’s approximation theorem the unit-in-
terval sampling grid is dense in the grid (Fig. 2), and there is a
sequence such that converges
to a non-zero value. This means that for those sampling points,
the linear term cannot cancel the exponential growth. If is ra-
tional, it means that the periodic term takes finitely many values.
If one of these values is non-zero, then we have a subsequence
for which the periodic term is constant; the linear term cannot
cancel the exponential growth for this subsequence either. If all
the sample values are zero, then the linear term should be zero
on the sampling grid, too. This is a contradiction, as is
zero for at most a single value of .
Case D: Let . The equivalence property translates

in this case to the following linear combination

(6)

Since the pairs are distinct, there must be one function in
the the sum with a non-comparable rate of decay. Also, a finite
linear combination of exponentials is a Haar space on , and
any such linear combination can have at most a finite number of
zeros.

Case E: Let and . The equivalence property
translates in this case to the following linear combination

This can be written as

If one of the exponentials is growing, then the linear combi-
nation cannot be made zero. If both exponentials are decaying,
then it might happen that the periodic term will cancel the term

after all. This, however, cannot happen
and we apply the same reasoning as in Case C.
Case F: Let . The equivalence property translates

in this case to the following linear combination

(7)

We need additional assumptions on to prove uniqueness.
Consider for example , , and .
The sampled version of the two autocorrelation functions are
the same in this case although . We will therefore focus
on cases where is an irrational multiple of , making the pe-
riod of the trigonometric term irrational. If then we can
apply the same reasoning as in Cases C, E and show that it is
not possible to have two equivalent process. If , then
the two exponentials have the same rate of decay. The question,
then, is whether the sampled versions of the two periodic terms
can be made equal when . We address this matter by
utilizing Kronecker’s approximation theorem, as shown next.

A. Periodic Functions on a Grid

Definition 4: is the period of

(8)

where is in and .
Definition 5: Let be a grid. The distance

of from this grid is defined by (Fig. 2)

(9)

If is rational, then the sequence takes finitely
many different values. If , however, is irrational, then ac-
cording to Kronecker’s approximation theorem the sequence is
dense in . We consider next the case of two sampled
periodic functions.
Proposition 1: Let and be irrational such that

1, and are independent over . Then, the set
is dense in .
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As an example, if ,
then the equivalence property translates here into the require-
ment that for any pair in

. Since is not a constant function, there is no way
of meeting this requirement. Other examples are and

. We note that are linearly dependent
over the rationals and for such cases we introduce the next two
propositions.
Proposition 2: Let and be irrational such that

for some . Then,
the closure of the set contains one of
the following lines

(10)

under the quotient map

(11)

Proposition 3: Let be irrational and let be rational.
Then, the closure of the set contains a
line that passes through (0, 0) with slope zero.
Under the conditions of Proposition 3, the equivalence prop-

erty translates into the requirement that . This
cannot happen since is not a constant function. As for
Proposition 2, it still requires to be equal to on a
line. This line, however, has a more involved structure, and this
requirement implies .
Case F (Contd.): Propositions 1–3 mean that if is ir-

rational, then there are no equivalent points in . As
, it follows that if is not a rational multiple of , then it

is unique in .
Our analysis gives rise to the following theorem which quan-

tifies the prevalence of continuous-time AR(2) processes for
which there exists a unique set of parameters that comply with
the sampled version of the autocorrelation function.
Theorem 2: Almost every continuous-time AR(2) process

is unique. Specifically, the set of non-unique continuous-time
AR(2) processes has Lebesgue measure zero in the complex
plane.
All continuous-time AR(2) processes that are defined by

Cases A, B, C, D, and E are unique. Ambiguity may arise only
in Case F which compares two processes that have a set of
two conjugate complex poles. The autocorrelation function in
this case includes a periodic term that is sampled on the unit
grid. Propositions 1–3 state that if the period is irrational, then
uniqueness is guaranteed. If it is rational, then there might be
cases in which the sampled versions of the periodic terms will
differ by a constant multiplicative value that can be associated
with the innovation intensity . This is in agreement with
previous known results that avoid any possible ambiguity by
restricting the imaginary part of the continuous-time poles.
Theorem 2 shows, however, that the Lebesgue measure of such
ambiguous continuous-time processes is zero in the complex
plane, and that there are more continuous-time AR(2) processes
which are uniquely defined by their sampled version. We note
that additional knowledge on may solve the ambiguity

completely. Another possible way is to consider more than one
sampling grid.
Theorem 2 implies that sampling rate values do not impose

limitations on parameters estimation from sampled data. Cur-
rently available methods assume sampling rate values that are
relatively high compared to the time constant of the model, and
such an assumption is no longer required. This, in turn, opens up
new opportunities for estimation algorithms that take the sample
values of the autocorrelation function into account as was re-
cently done in [16].

V. CONCLUSIONS

In this work, we considered sampling of continuous-time AR
models on a uniform grid. We investigated whether the dis-
crete-domain model is unique in the sense that it originates from
a single continuous-time model. We focused on the continuous-
time AR(2) process and introduced an alternative description of
poles in the complex plane. Such a description avoids the cou-
pling between real and complex poles. We then utilized Kro-
necker’s approximation theorem for proving that the set of non-
unique continuous-time AR(2) models has Lebesgue measure
zero. This result allows one to remove the sampling rate con-
straint that is used in currently available estimation algorithms,
and to derive improved algorithms that overcome the power
spectrum aliasing.
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