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Wavelet Shrinkage With Consistent Cycle Spinning
Generalizes Total Variation Denoising
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Abstract—We introduce a new wavelet-based method for the
implementation of Total-Variation-type denoising. The data term
is least-squares, while the regularization term is gradient-based.
The particularity of our method is to exploit a link between the
discrete gradient and wavelet shrinkage with cycle spinning,
which we express by using redundant wavelets. The redundancy
of the representation gives us the freedom to enforce additional
constraints (e.g., normalization) on the solution to the denoising
problem. We perform optimization in an augmented-Lagrangian
framework, which decouples the difficult n-dimensional con-
strained-optimization problem into a sequence of 12 easier scalar
unconstrained problems that we solve efficiently via traditional
wavelet shrinkage. Our method can handle arbitrary gra-
dient-based regularizers. In particular, it can be made to adhere
to the popular principle of least total variation. It can also be used
as a maximum a posteriori estimator for a variety of priors. We
illustrate the performance of our method for image denoising and
for the statistical estimation of sparse stochastic processes.

Index Terms—Signal denoising, total variation, wavelet regular-
ization, cycle spinning, augmented Lagrangian.

I. INTRODUCTION

AVELET regularization [1] has been shown to be

particularly effective in reducing noise, while pre-
serving important signal features. The performance of the
method can be further improved, at little computational cost,
by using the technique known as cycle spinning [2]-[4]. Cycle
spinning compensates for the lack of shift-invariance of the
wavelet basis by considering different shifts of the signal.
Total variation (TV) [5] regularization is another widely used
denoising method, which penalizes random oscillations in the
signal, while allowing the discontinuities. Interestingly, for 1-D
signals, Haar-wavelet shrinkage with cycle spinning has been
shown to be closely related to TV regularization [6].

In this letter, we exploit the link between the two estimation
methods to derive a new wavelet-based method for efficiently
solving TV-type denoising problems in one or 2-D. The key ob-
servation is that TV-regularized least-squares minimization can
be reformulated as a constrained optimization problem in the
wavelet domain. We use the augmented-Lagrangian method [7]
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to cast the problem as a sequence of unconstrained problems
that can be solved by simple soft-thresholding. By replacing
the soft-thresholding function by another scalar function or by
a precomputed lookup table, we can efficiently extend our al-
gorithm beyond traditional ¢; regularizers to general, possibly
non-convex, potential functions.

This letter is organized as follows: In Section II, we review
wavelet and TV regularization methods. Our main results are
presented in Section III. In Section IV, we perform numerical
experiments and illustrate the applications of the method.

II. THE BASIC METHODS

Consider the signal denoising problem for which the goal is
to estimate an unknown signal x € R™ from a noisy observation

y=X-+n

where the vector n € R™ is assumed to be an i.i.d. Gaussian-
noise vector. We assume periodic boundary conditions and vec-
torize 2-D images in a column-major order.

A. Wavelet-Based Denoising

In a wavelet based framework, the unknown signal to esti-
mate is expressed as x = W7 w, where W represents an or-
thonormal wavelet transform. Then, the estimation can be per-
formed by the regularized least-squares problem

1
w(y) = argmin {§||w - Wyl3 + T(I)(W)} )
weR™

where the function ®( - ) is a regularizer that promotes solutions
with certain desirable properties, and 7 € R is the regulariza-
tion parameter. For example, the popular wavelet-shrinkage al-
gorithm can be obtained by using the non-smooth convex func-

tion ®(-) = || - || that favors sparse wavelet-domain solutions
and admits the closed form solution
w(y) =n(Wy;) @

where the soft-thresholding function #( - ) is applied componen-
twise [1]. The final signal estimate is obtained by computing
% = WTw. If the wavelet representation w has both coarse
(low-pass) and detail (high-pass) coefficients, the shrinkage is
performed only on the detail coefficients.

The performance of wavelet shrinkage can be improved via
the cycle-spinning method. Consider the transform

W
H= : 3)
Wxk
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with W, = WS, where S;. represent different circular shifts
required to make the transform W integer-shift-invariant. The
transform H consists of K unitary transforms W, and thus de-
fines a K -tight frame, which implies the Parseval-like equality

1
I3 = < IFEx3. 4)
The dual of H is defined as H' = (1/K)[W7 ... WZ], where
the operation W7 simply corresponds to first inverting the
wavelet coefficients by applying W7 and then performing
inverse circular shift S _j. The estimation is performed by

- . 1
w(y) = argmin { —|lw — Hy|)? + T(I)(W)} (5)
wERRE 2K
where the regularizer ®( - ) operates only on the detail wavelet
coefficients. The final reconstruction is obtained via

w(y). (6)

For ®(-) = || - ||1, this formulation results in the method de-
scribed in [2]. More recently, this approach has become popular
in signal denoising and inverse problems to improve the perfor-
mance of the wavelet-regularization methods at little computa-
tional cost [3], [4]. In this letter we refer to that type of cycle
spinning as conventional cycle spinning, to distinguish it from
our method.

x(y)=H'

B. Total-Variation Regularization

TV denoising works by solving the optimization problem

. .1
x(y) = arguin { Syl + LG} @)
ere 12
where L{x} € R™ is a vector that contains the Euclidean norm
of the discrete gradient of x at all indices ¢ € [1 ... n], defined
component-wise as

i1 — 2] 1-D signals
[L{x}: { [Dyx)? + [Dyx]? 2-D signals ®)

Here, Dy, and D, are matrices corresponding to the first order
finite difference in the horizontal and vertical directions of the
2-D image, respectively. Although solving (7) is more difficult
than solving (1) due to the coupling introduced by the operator
1.{-}, algorithms such as FISTA [8] are capable of efficiently
performing TV denoising.

By comparing the equation for the discrete gradient of the
signal x at some pixel 7 with the Haar-wavelet expansion, which
involves sums and differences [9], we can guess that TV de-
noising is related to wavelet shrinkage. In fact, it has been shown
for 1D signals that a single iteration of a numerical TV denoising
scheme (from [6]) is equivalent to Haar-wavelet shrinkage with
conventional cycle spinning.

III. PROPOSED METHOD

A. Motivation

In the sequel, we will introduce a new, simple, and generic
wavelet-based method for solving (7) that can be viewed as an
extension to the conventional cycle spinning. As mentioned,
due to the tightness of the frame, equality (4) always holds.
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However, as the transform is redundant, the converse equality
|lwl||2 = K||H'w|2 is not necessarily true. To restore a norm
equivalence, we must impose consistency in the optimization
problem (5). It turns out that the norm equivalence holds if and
only if the solution w € R™¥ is within the space spanned by the
columns of H. In other words, for any potential w there must
exist x € R™ such that w = Hx. An alternative way to repre-
sent this constraint is to enforce HH'w = w on the solution of

).

B. Constrained Formulation

We would like to find the solution of the optimization problem

x(y) = argmin J(x) (9a)
xeR”
with
1 "
J(x) = §||X—Y||§+TZ¢([L{X}H (9b)

i=1

which reduces to the TV problem in (7) for the potential function
#(-) = | - |. When the objective J(-) is non-convex, it is
difficult to find a global minimizer and we are satisfied with a
local optimum.

Consider the shift-invariant transform H in (3), given that W
now represents a single-level 1-D Haar transform. Note that a
1-D Haar representation of a 2-D signal can be computed by
applying the transform either horizontally or vertically. Hence,
for 1-D signals we have K = 2 and for 2-D images K = 4 (two
transformations for each dimension of the gradient). It is then
clear that each element of the discrete gradient can be uniquely
mapped to the detail coefficients of w = Hx by replacing each
finite difference by some corresponding Haar coefficient.

Assume that coarse and detail Haar coefficients correspond
to the elements w; of w for¢ € [1...nK/2] andi € [1 +
nK/2...nK],respectively. Furthermore, assume we store hor-
izontal coefficients before vertical ones in the 2-D case. Then,
the constrained optimization problem

Ww(y) = argmin F(w) s.t. HH'w = w (10a)
wERRK
with
1 .
F(w) = ﬁHW—Hﬂl%*‘T‘I’(W% (10b)

is equivalent to (9a) when the regularizer ®( - ) is given by

Z (/5(\/5|71’1L+i‘)

a(w) = { 7

Z @ (\/5\/(7“%4-1‘)2 +

1-D

(11}3,,L+i)2) 2-D.

The final estimate of the signal can be obtained simply by ap-
plying the dual H' as in (6). The role of the constraint HH'w =
w in (10a) is to enforce the solution to be within the space
spanned by the columns of H. This implies the equivalence
of the problems (9a) and (10a) because, in the feasible region
{w: HH'w = w}, the cost functions J( - ) in (9b) and F(- )
in (10b) coincide with one another.
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C. Augmented-Lagrangian Formulation

It would be difficult to handle directly constrained-optimiza-
tion problems such as (10a). Consequently, we replace it with an
equivalent unconstrained optimization problem. One traditional
technique for doing this is the augmented-Lagrangian method
[7]. To apply it, we replace the objective function F( - ) with the
new penalty function
L(w.x, A p) = F(w)+ g”w —Hx|2-A"(w-Hx) (1)
where 12 € R is called the penalty parameter and A € R
is the vector of Lagrange multipliers. The consistency condi-
tion w = Hx asserted by the penalty function is equivalent
to w = HH'w. The method works by iteratively minimizing
L(-) with respect to (w, x) while keeping ; fixed and updating
A according to a simple rule

A= - (Wt - R (12)
where £ > 0 is the iteration number. To solve the minimization
of the objective (11), we apply the alternating-direction method
of multipliers (ADMM) [10] and alternate between solving the
problem for w with x fixed and vice versa.

The solution with respect to w is obtained by rewriting the
problem as

Wit = argmin £(w, X, A'; 1)
.1 2, -
= argmin §||wfw||2+7(1>(w) (13)
where w = (Hy + pKHX' + KX)/(1 + pK),

7K/(1 + pK), and ®(-) is the same as in (10b).
This problem is solved efficiently in one step by applying n
times the generalized shrinkage function

F o=

.1 :
i) = arguin { 31— y13 + 76 (V2lxlz) |

xeRh’/z
(14)

The range of the function W, (-) is R for 1-D signals and R?
for 2-D images. For the case of TV denoising, the shrinkage
function admits the closed form

U (y;7) = Hl&X{HYHQ —Vor, ()} - (15)

I¥ll2
In the general case, we propose to precompute the solution of
(14) and store it in a lookup table.
The solution with respect to x is obtained as

%™ = argmin (W' x, A )
" HT A
=Hiw - — 2 (16)
1

The resulting Algorithm 1 is conceptually similar to conven-
tional cycle spinning: it denoises in the shifted wavelet bases
and combines the solutions. However, we are constraining our
solutions to be consistent across shifted bases. This ensures
that our algorithm avoids the oscillations caused by changing
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wavelet bases that have been observed by various authors
(cf. [4]). Moreover, our algorithm splits the minimization into
n-scalar shrinkages, which results in a favorable algorithmic
complexity of O(n) per iteration.

Algorithm 1

1: input: y,x° € R*, 7, p € R,

2:set: 1 =0,A" =0

3: repeat

4: Wl = (Hy + pKHX + KXY /(1 + pK)
50 witl = \I/q;(v?/t*'l;TK/(l + uK))

6: X = HI (W' — X/ )

7o AT = AP - (Wi — HEY)

8 1t=1t+1

9: until stopping criterion
10: return x

Note: The function ¥4( - ) is applied only on the detail
coefficients of w.

IV. EXPERIMENTAL RESULTS

A. Model-Based Estimation

In a first experiment, we consider the problem of estimating
the samples of sparse Lévy processes corrupted by noise. The
defining property of Lévy processes [11] is that they have sta-
tionary and independent increments, which means that the dis-
crete signal x can be decoupled by application of a finite-dif-
ference operator. We draw the increments of the signal x from
a Cauchy distribution, which has recently been demonstrated to
be highly compressible [12].

The maximum a posteriori (MAP) estimator for such pro-
cesses can be easily obtained by choosing the potential func-
tion ¢([L{x}];) = log([L{x}]? + 1). Although the objective
in this estimation problem is nonconvex, our algorithm, tai-
lored with a lookup table for the generalized shrinkage func-
tion (- ), can easily be applied. We compare denoising per-
formance of the MAP estimator against TV regularization, con-
ventional cycle spinning, wavelet shrinkage with full decom-
position, and LMMSE estimator. Various noise levels are taken
into account, and for each noise level, we perform 100 random
realizations of the problem with signals of length 2048. For each
realization, the regularization parameters of the methods are op-
timized for the best MSE performance. We let all of the iterative
methods run for 200 iterations and obtained the results presented
in Fig. 1.

It can be seen from Fig. 1 that the MAP estimator obtained via
our algorithm outperforms the other standard estimators over
the whole range of noise considered. Meanwhile, our experi-
ment confirms the common observation that linear estimators
(LMMSE) are poorly suited for sparse signals. Clearly, the per-
formance of wavelet shrinkage via thresholding of the Haar co-
efficients is significantly improved by using conventional cycle
spinning. Also, we note a very similar performance of TV and
conventional cycle spinning for certain noise levels, with TV
offering a better overall performance.
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Fig. 1. Comparison of various sparse-estimation methods for a-stable Lévy
processes. See text for a detailed explanation of the experiment.

Fig. 2. Comparison of denoising results for the brain phantom: (a) original
image; (b) noisy data, SNR = 15.02 dB; (c) TV regularization, SNR =
21.61 dB; (d) Log regularization, SNRR. = 23.69 dB.

B. Image Denoising

It has been recently demonstrated that the recoverability of
sparse signals can be significantly improved by extending the
traditional #;-based reconstruction to nonconvex objectives
[13], [14]. Following this philosophy, we consider the potential
function ¢([L{x}];) = log([L{x}]? + €), where ¢ is a scalar
parameter which controls the desired sparsity of the solution.
We compare the SNR performance of log-regularized denoising
and TV denoising, with ¢ = 10~* and p» = 1/2. Both methods
are run for 500 iterations. Again, the regularization parameters
are optimized via oracle for the highest-possible SNR. We
compared the performance of our method, for TV denoising,
with FISTA and observed that both algorithms are comparable
in terms of speed!. In Fig. 2, we provide the results of this
image-denoising experiment applied to the realistic analytical
brain phantom [15]. It is a piecewise constant image, which
implies that its gradient is sparse.

ISee supplementary material for additional comparison plots available at
http://people.epfl.ch/ulugbek.kamilov.
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The results in Fig. 2 support the observation that log-penal-
ized problems yield sparser solutions compared to £; minimiza-
tion. In the present example, the SNR is improved by more than
2 dB.

V. CONCLUSION

In this letter, we derived a simple denoising algorithm for sig-
nals and images. The algorithm exploits the link between two
popular estimation methods: TV and wavelet regularization. We
demonstrated that solving the TV problem can be achieved by
constraining the solution set of Haar shrinkage with cycle spin-
ning. We solved this constrained problem in an augmented-La-
grangian framework, which reduces the method into a sequence
of scalar shrinkages. By precomputing the solution of the scalar
subproblems, our algorithm can be extended to handle arbitrary
potential functions, which makes it practically interesting for
sparse estimation beyond ¢;.
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