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Recovery Guarantees for Rank Aware Pursuits
Jeffrey D. Blanchard and Mike E. Davies

Abstract—This paper considers sufficient conditions for sparse
recovery in the sparse multiple measurement vector (MMV)
problem for some recently proposed rank aware greedy algo-
rithms. Specifically we consider the compressed sensing frame-
work with Gaussian random measurement matrices and show
that the rank of the measurement matrix in the noiseless sparse
MMV problem allows such algorithms to reduce the effect of the
log n term that is present in traditional OMP recovery.

Index Terms—Multiple Measurement Vectors, Greedy Algo-
rithm, Othogonal Matching Pursuit, rank.

I. INTRODUCTION

Sparse signal representations provide a general signal model
that make it possible to solve many ill-posed problems such
as source separation, denoising and most recently compressed
sensing [1] by exploiting the additional sparsity constraint.
While the general problem of finding the sparsest x ∈ Rn

given an observation vector y = Φx, y ∈ Rm is known to
be NP-hard [2] a number of suboptimal strategies have been
shown to be able to recover k-sparse signals, x, when m ∼
Ck log(n/k) for some constant C, if Φ is chosen judiciously.

An interesting extension of the sparse recovery problem is
the sparse multiple measurement vector (MMV) problem, Y =
ΦX, Y ∈ Rm×l, X ∈ Rn×l, which has also received much
attention, e.g. [3], [4], [5]. Initially the algorithms proposed
for this problem were straightforward extensions of existing
single measurement vector (SMV) solutions. However, most of
these are unable to exploit the additional information available
through the rank of Y. In contrast, some new greedy algo-
rithms for joint sparse recovery have been proposed [6], [7],
[8] based around the MUSIC (MUltiple SIgnal Classification)
algorithm [9] from array signal processing which provides
optimal recovery in the maximal rank scenario r = k [10].

The aim of this paper is to analyse the recovery performance
of two Rank Aware algorithms when the observation matrix
does not have maximal rank, rank(Y) < k. Our approach
follows the recovery analysis of [11] where it was shown that,
in the noiseless case, Orthogonal Matching Pursuit (OMP)
can recover k-sparse vectors from m & Ck log n Gaussian
measurements with high probability. We extend this analysis
to the MMV sparse recovery problem and show joint k-sparse
matrices, X, can be recovered from m & Ck( 1

r log n + 1)
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MMVs using a rank aware algorithm.1 This implies that the
log n penalty term observed for OMP recovery can be essen-
tially removed with very modest values of rank, r & log n.

II. NOTATION AND PROBLEM FORMULATION

We define the support of a collection of vectors X =
[x1, . . . ,xl] as the union over all the individual supports:
supp(X) :=

⋃
i supp(xi). A matrix X is called k joint sparse

if |supp(X)| ≤ k. We make use of the subscript notation ΦΩ

to denote a submatrix composed of the columns of Φ that
are indexed in the set Ω, while the notation XΩ,: denotes a
row-wise submatrix composed of the rows of X indexed by
Ω. Thus denoting by |Ω| the cardinality of Ω, the matrix XΩ,:

is |Ω|-sparse.
We can now formally define the sparse MMV problem.

Consider the observation matrix Y = ΦX, Y ∈ Rm×l

where Φ ∈ Rm×n with m < n is the dictionary matrix and
X ∈ Rn×l is assumed to be jointly k-sparse. The task is then
to recover X from Y given Φ. We will further assume that
rank(Y) = r and without loss of generality that r = l.

III. GREEDY MMV ALGORITHMS

Despite the fact that the rank of the observation matrix Y
can be exploited to improve recovery performance, to date
most popular techniques have ignored this fact and have been
shown to be “rank-blind” [6]. In contrast, a discrete version
of the MUSIC algorithm [10], [13] is able to recover X from
Y under mild conditions on Φ whenever m ≥ k +1 if we are
in the maximal rank case, i.e. rank(Y) = k.

While MUSIC provides guaranteed recovery for the MMV
problem in the maximal rank case there are no performance
guarantees for when rank(X) < k and empirically MUSIC
does not perform well in this scenario. This motivated a
number of works [6], [7], [8] to investigate the possibility of
an algorithm that in some way interpolates between a classical
greedy algorithm for the SMV problem and MUSIC when
rank(X) = k.

The approach proposed in [7], [8] was to use a greedy
selection algorithm to find the first t = k − r coefficients.
The remaining components can then be found by applying
MUSIC to an augmented data matrix [Y, Φ(t)

Ω ] which under
identifiability assumptions will span the range of ΦΛ.

In [6] two “rank aware” (RA) algorithms were presented. In
RA-OMP the greedy selection step was modified to measure
the distance of the columns of Φ from the subspace spanned by
the residual matrix at iteration t by measuring the correlation
of columns of Φ with an orthonormal basis of the residual

1These results were previously announced at the “SMALL” workshop,
London, January 2011 [12].
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Algorithm 1 RA-OMP / RA-ORMP

1: initialization: R(0) = Y,X(0) = 0,Ω0 = ∅
2: for j = 1; j := j + 1 until stopping criterion do
3: Calculate U(j−1) = ortho(R(j−1)),
4: if (RA-OMP) then
5: i(j) = arg maxi ‖ϕT

i U(j−1)‖2
6: else if (RA-ORMP) then
7: i(j) = arg maxi6∈Ω(j−1) ‖ϕT

i U(j−1)‖2/‖P⊥Ω(j−1)ϕi‖2
8: end if
9: Ω(j) = Ω(j−1) ∪ i(j)

10: X(j)

Ω(j),:
= Φ†

Ω(j)Y
11: R(j) = Y − ΦX(j)

12: end for

matrix: U(j−1) = ortho(R(j−1)).2 However, the recovery
performance was shown to deteriorate even in the maximal
rank scenario as the algorithm selected more coefficients.
To compensate for this, the column normalization used in
Order Recursive Matching Pursuit (ORMP) was included.
Specifically at the start of the tth iteration, if we have a
selected support set Ω(t), a new column Φi is then chosen
based upon the following selection rule:

i(t) = arg max
i

‖ϕT
i U(t)‖2

‖P⊥
Ω(t)ϕi‖2

, (1)

where P⊥
Ω(t) denotes the orthogonal projection onto the null

space of ΦΩ(t) . The righthand side of (1) measures the
distance of the normalized vector P⊥

Ω(t)ϕi/‖P⊥Ω(t)ϕi‖ from the
subspace spanned by U(t). This ensures that correct selection
is maintained at each iteration in the maximal rank scenario.
The full description of the RA-OMP and RA-ORMP are
summarized in Algorithm 1.

In the next section the recovery guarantees for RA-ORMP
and RA-OMP+SA-MUSIC (using RA-OMP to select the first
k−r indices followed by the subspace augmented SA-MUSIC
of [7], [8]) are examined and shown to exploit the rank of Y
very effectively.

RA-OMP+SA-MUSIC is very similar to the approach con-
sidered in [7]. However in [7] only a single orthogonalization
of Y was performed followed by simultaneous OMP (SOMP).
[8] considered SOMP+SA-MUSIC but without an initial or-
thogonalization.3 Both theoretical and empirical recovery per-
formance of SOMP+SA-MUSIC is limited due to the “rank-
blind” property of SOMP [6].

IV. SPARSE MMV RECOVERY BY RA-OMP

Correct selection by the RA-OMP algorithm at the jth
iteration is characterized by the following quantity.

2In practice, significant complications arise in the noisy case where the
estimation of the rank and signal subspace is non-trivial. For an analysis of
related algorithms in the noisy case, see [14].

3While writing up this work we became aware of an updated version
of [8] where the authors have switched to considering the RA-OMP+SA-
MUSIC proposed here instead of SOMP+SA-MUSIC. The updated version
also analyses the presence of noise in an asympotic setting allowing the
problem size to tend to ∞.

Definition 1 (Greedy Selection Ratio for RA-OMP). In iter-
ation j of RA-OMP, let Λ = supp(X) and define the greedy
selection ratio for RA-OMP as

ρ(j) =
maxi′∈Λc ‖ϕT

i′U
(j)‖2

maxi∈Λ ‖ϕT
i U(j)‖2

. (2)

The following observation is obvious.

Lemma 1. In iteration j, RA-OMP will correctly select an
atom ϕj , j ∈ Λ = supp(X) if and only if ρ(j) < 1.

To bound ρ(j) we introduce the following lemmas.

Lemma 2. Suppose U ∈ Rm×r with columns Ui ∈
range(ΦΛ) and ‖Ui‖2 = 1 for all i. Let α = σmin(ΦΛ)
be the smallest singular value of ΦΛ with |Λ| = k < m. Then

max
i∈Λ

‖ϕT
i U‖2 ≥ α

√
r

k
. (3)

Proof: We can write

‖ϕT
i U‖22 = ‖eT

i ΦT
ΛU‖22 (4)

where ei is the standard (dirac) basis in Rk.
Define Ũ = ΦT

ΛU. Since Ui is in the range of ΦΛ we have
the following bound:

‖Ũi‖22 ≥ σmin(ΦΛ)2‖Ui‖22 = α2 (5)

Hence

max
i∈Λ

‖ϕT
i U‖22 = max

i∈Λ
‖eT

i Ũ‖22 = max
i∈Λ

r∑

l=1

[Ũ]2i,l

≥ mean
i

[Ũ]2i,l =
1
k

k∑

i=1

r∑

l=1

[Ũ]2i,l

=
1
k

r∑

l=1

‖Ũl‖22 ≥
r

k
α2

(6)

where we have bounded the maximum by the mean and then
swapped the order of summation.

Lemma 3. If Φ ∈ Rm×n with entries draw i.i.d. from
N (0,m−1), Λ ⊂ {1, . . . , n} is an index set with |Λ| = k,
and U ∈ Rm×r is a matrix with orthonormal columns,
rank(U) = r and with span(U) ⊂ span(ΦΛ), then

P
{
max
i∈Λc

‖ϕT
i U‖22 < µ2

} ≥ 1− (n− k)e−(mµ2−2r)/4. (7)

Proof: Let z = ϕT
i U then z ∈ Rr and for i 6∈ Λ the

entries in z follow the normal distribution N (0,m−1). We can
now use the Laplace transform method [15] to bound ‖z‖2.

P
{‖z‖22 ≥ µ2

} ≤ e−λµ2
E

{
eλ‖z‖22

}

= e−λµ2+ r
2 ln

(
m

m−2λ

) (8)

for any λ > 0. Selecting λ = m/4 gives

P(‖z‖22 ≥ µ2) ≤ e−(mµ2−2r)/4. (9)

Applying the union bound completes the result.
We will also require that the residual matrix, R(j), retains

generic rank (equivalent to the row non-degenerancy condition
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in [7]) which is given by:

Lemma 4. Let Φ ∈ Rm×n with entries draw i.i.d. from
N (0,m−1) and X be a joint sparse matrix with support
Λ ⊂ {1, . . . , n}, |Λ| = k, such that XΛ,: is in general postion.
If Ω(j) ⊂ Λ for j ≤ k − r, then rank(R(j)) = r.

Proof: Note that:

R(j) = P⊥Ω(j)Y = P⊥Ω(j)ΦΛ−Ω(j)XΛ−Ω(j),: . (10)

Since XΛ,: is in general position rank(XΛ−Ω(j),:) =
min{r, k − j} = r, and since Φ is i.i.d. Gaussian then
P⊥

Ω(j)ΦΛ−Ω(j) will have maximal rank with probability 1.
Therefore rank(R(j)) = r.

We can combine the above lemmata to give:

Lemma 5. Suppose that after j < k − r iterations of RA-
OMP, Ω(j) ⊂ Λ = supp(X) with |Λ| = k. Define R(j) =
Y − ΦX(j) and assume X is in general position and Φ ∈
Rm×n with entries drawn i.i.d. from N (0,m−1). Then, for
α = σmin(ΦΛ),

P
{
Ω(j+1) ⊂ Λ

} ≥ 1− (n− k)e−(mα2 k
r−2r)/4. (11)

Proof: Let U(j) = ortho(R(j)) then from Lem. 4 we
have rank(U(j)) = rank(R(j)) = rank(X) = r. Now, Lem. 1
and the assumption that Ω(j) ⊂ Λ allow us to rewrite the
probability statement as

P
{
Ω(j+1) ⊂ Λ

}
= P

{
ρ(j + 1) < 1

}
.

Lemmas 2 and 3 with µ2 = α2r/k combine to show that

P
{
ρ(j + 1) < 1

}
= P

{
max
j′∈Λc

‖ϕT
j′U‖2 < max

j∈Λ
‖ϕT

j U‖2
}

≥ P{
max
j′∈Λc

‖ϕT
j′U‖22 <

α2r

k

}

≥ 1− (n− k)e−(mα2 r
k−2r)/4.

We can now state our main theorem for RA-OMP.

Theorem 6 (RA-OMP + SA-MUSIC recovery). Assume X ∈
Rn×r, supp(X) = Λ, |Λ| = k > r with XΛ in general
position and let Φ be a random matrix, independent of X,
with i.i.d. entries Φi,j ∼ N (0,m−1). Then, for some C and
with probability greater than 1 − δ, RA-OMP + SA-MUSIC
will recover X from Y = ΦX if:

m ≥ Ck
(1
r

log(n/
√

δ) + 1
)
. (12)

Proof: It is sufficient to bound the probability of making
q ≤ k−r successive correct selections after which SA-MUSIC
[7] is guaranteed to recover the remaining coefficients [7], [8].
Suppose σmin(ΦΛ) = α, then

P{max
t≤q

ρ(t) < 1} ≥
∏

t≤q

P{ρ(t) < 1}

≥
[
1− (n− k)e−(mα2r/k−2r)/4

]q

≥ 1− q(n− k)e−(mα2r/k−2r)/4.

(13)

Now recall [11] that P{σmin(ΦΛ) > 0.5} ≥ 1 − e−cm for

some c > 0. Hence:

P{max
t≤q

ρ(t) < 1} ≥
(
1− n2e−(mα2r/k−2r)/4

)(
1− e−cm

)

≥ 1− n2e−(mr/k−8r)/16 − e−cm

≥ 1− n2e−C(mr/k−8r)

(14)

where we have used the fact that q(n−k) < n2. Now choosing
δ ≥ n2e−C(mr/k−8r) and rearranging gives (12).

V. SPARSE MMV RECOVERY BY RA-ORMP

As RA-OMP and RA-ORMP only differ in the selection
step we can use similar aguments to above, with additional
control of the normalization term ‖P⊥

Ω(j)ϕi‖2 given by the
following.

Lemma 7. If Φ ∈ Rm×n with i.i.d. entries Φi,j ∼ N (0,m−1),
Λ ⊂ {1, . . . , n}, |Λ| = k, and Ω(j) ⊂ Λ, |Ω(j)| = j, then for
i 6∈ Ω(j) and m ≥ 2j we have:

P
{
‖P⊥Ω(j)ϕi‖22 ≥

1
4

}
≥ 1− e−m/32 (15)

Proof: Since P⊥
Ω(j) and ϕi are independent, z := P⊥

Ω(j)ϕi

is a Gaussian random vector within the m−j dimensional sub-
space Null(ΦT

Ω(j)) whose entries have variance m−1. Hence
we can use the following concentration of measure bound [15]:

P
{
‖z‖22 ≥ (1− ε)

m− j

m

}
≥ 1− e−ε2(m−j)/4 (16)

Selecting ε = 1/2 and noting that by assumption m−j ≥ m/2
gives the required result.

Lemma 8. If Φ ∈ Rm×n with i.i.d. entries Φi,j ∼ N (0,m−1),
Λ ⊂ {1, . . . , n}, |Λ| = k, and Ω(j) ⊂ Λ, |Ω(j)| = j, then for
i 6∈ Ω(j) and m ≥ 2j we have:

P
{
‖P⊥Ω(j)ϕi‖22 ≤ 2

}
≥ 1− e−m/16 (17)

Proof: Standard Gaussian bounds [15] for ϕi give:

P
{‖ϕi‖22 ≤ (1− ε)−1

} ≥ 1− e−ε2m/4 (18)

Selecting ε = 1/2 and using ‖P⊥
Ω(j)ϕi‖2 < ‖ϕi‖2 gives the

required result.

Theorem 9 (RA-ORMP recovery). Assume X ∈ Rn×r,
supp(X) = Λ, |Λ| = k > r with XΛ in general position and
let Φ be a random matrix, independent of X, with i.i.d. entries
Φi,j ∼ N (0,m−1). Then, for some C and with probability
greater than 1− δ, RA-ORMP will recover X from Y = ΦX
if m satisfies (12).

Proof: We first note that if Ω(j) ⊂ Λ, j < k − r and
α = σmin(ΦΛ), then

P
{

Ω(j+1) ⊂ Λ
}

= P
{

max
i′∈Λc

‖ϕT
i′U

(j)‖22
‖P⊥

Ω(j)ϕi′‖22
≤ max

i∈Λ

‖ϕT
i U(j)‖22

‖P⊥
Ω(j)ϕi‖22

} (19)

Now using the bounds from Lemma 3 with µ2 = α2r/8k and



BLANCHARD AND DAVIES: RECOVERY GUARANTEES FOR RANK AWARE PURSUITS 4

Lemmas 7 and 8 along with the union bound gives:

P
{
Ω(j+1) ⊂ Λ

} ≥ (
1− (n− k)e−(mα2 r

k−2r)/4
)

× (
1− (n− k)e−m/32

)(
1−me−m/16

)

≥ 1− (n− k)
(
e−(mα2 r

k−2r)/4 + e−m/32 + e−m/16
)

≥ 1− (n− k)e−C(mα2 r
k−2r)

(20)

for an appropriately choosen C. To complete the proof for the
correct selection of Ω(j) for all j < k− r we can again apply
the union bound and remove the dependence on α as in (13)
and (14) above. We leave the details to the reader.

For the selection of the remaining coefficients we note that
for j ≥ k − r the original RA-ORMP task is equivalent to
solving R(j) = [P⊥

Ω(j)ΦΛ−Ω(j) ]XΛ−Ω(j),: using RA-ORMP.
However by our assumptions on X, rank(XΛ−Ω(j),:) = r =
|Λ−Ω(j)| therefore we are in the maximal rank scenario and
from [6] we have guaranteed recovery by RA-ORMP.

VI. NUMERICAL RESULTS

Here we demonstrate empirically that the (log n)/r term in
our recovery result appears to accurately capture the effect of
rank on the recovery performance. To this end we performed
a number of experiments using Gaussian random matrices for
both Φ and XΛ. The parameters m and k were held fixed,
first at m = 3k/2 = 30 and then with m = 2k = 40. We then
varied the number of channels of X from r = 1, . . . , 15 and n
in powers of 2 from 64 to 4096. For each set of {k, r,m, n}
we performed 100 trials and calculated the empirical proba-
bility of recovery. The included simulations are restricted the
noiseless case; the algorithms demonstrate robustness to noise
similar to that observed in [6], [7], [8].

Figure 1 shows the recovery plots for the recovery algo-
rithms RA-OMP + MUSIC and RA-ORMP. In each case the
“phase transition” appears to exhibit an approximate linear
dependency between r and log n as highlighted by the red
lines (note the lines are constrained to pass through the origin).

VII. CONCLUSION

Our theoretical results predict that the rank of the coef-
ficient matrix in the noiseless sparse MMV recovery prob-
lem can be successfully exploited in RA-OMP+SA-MUSIC
and RA-ORMP to enable joint sparse recovery when m &
Ck((log n)/r + 1) using a Gaussian measurement matrix,
although no attempt has been made to optimize the constant C.
This removes the log n penalty term that is observed in OMP
when there is only a modest number of mutliple measurement
vectors r & log n. Numerical experiments suggest that this
form may reasonably characterize the recovery behaviour in
practice. Empirically the RA-ORMP algorithm appears to
perform slightly better than RA-OMP+SA-MUSIC. However
this comes with an additional computational expense.

REFERENCES

[1] D. Donoho, “Compressed sensing,” IEEE Trans. on Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[2] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM
Journal on Computing, vol. 24, no. 2, pp. 227–234, Apr 1995.

log
2
 n

r

RA−OMP+MUSIC Recovery

6 7 8 9 10 11 12

2

4

6

8

10

12

14

log
2
 n

r

RA−ORMP Recovery

6 7 8 9 10 11 12

2

4

6

8

10

12

14

log
2
 n

r

RA−OMP+MUSIC Recovery

6 7 8 9 10 11 12

2

4

6

8

10

12

14

log
2
 n

r

RA−ORMP Recovery

6 7 8 9 10 11 12

2

4

6

8

10

12

14

(a) (b)
Fig. 1. Sparse MMV recovery plots showing the “phase transitions” for
RA-OMP+SA-MUSIC (a) and RA-ORMP (b) with m = 3k/2 = 30 (top)
and m = 2k = 40 (bottom) while varying the size of the dictionary n =
64, 128, . . . , 4096 and number of channels, r = 1, 2, . . . , 15. The red line
indicates a linear relation between r and log n.

[3] S. F. Cotter, B. D. Rao, K. Engan, and K. K-Delgado, “Sparse solutions
to linear inverse problems with multiple measurement vectors,” IEEE
Transactions on Signal Processing, vol. 53, no. 7, pp. 2477–2488, 2005.

[4] J. Chen and X. Huo, “Theoretical results on sparse representations of
multiple-measurement vectors,” IEEE Transactions on Signal Process-
ing, vol. 54, no. 12, pp. 4634–4643, 2006.

[5] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simulta-
neous sparse approximation. Part I: Greedy pursuit,” Signal Processing,
vol. 86, pp. 572–588, 2006.

[6] M. E. Davies and Y. C. Eldar, “Rank awareness and in joint sparse
recovery,” IEEE Trans. Information Theory, vol. to appear, 2011.

[7] K. Lee and Y. Bresler, “imusic: Iterative music algorithm for joint sparse
recovery with any rank,” 2010, arxiv preprint: arXiv:1004.3071v1.

[8] J. Kim, O. Lee, and J. C. Ye, “Compressive music: A missing link be-
tween compressive sensing and array signal processing,” arxiv preprint,
arXiv:1004.4398v1.

[9] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” Proceedings of RADC Spectral Estimation Workshop, pp. 243–
258, 1979.

[10] P. Feng, “Universal minimum-rate sampling and spectrum-blind recon-
struction for multiband signals,” Ph.D. dissertation, University of Illinois,
1998.

[11] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Transactions on
Information Theory, vol. 53(12), no. 12, pp. 4655–4666, 2007.

[12] M. E. Davies. (2011, Jan.) Rank aware algorithms for joint sparse
recovery. SMALL Workshop on sparse dictionary learning. [Online].
Available: http://small-project.eu/small-fs/videos/

[13] P. Feng and Y. Bresler, “Spectrum-blind minimum-rate sampling and re-
construction of multiband signals,” in Proceedings of IEEE International
Conference on the Acoustics, Speech, and Signal Processing, 1996, pp.
1688–1691.

[14] K. Lee, Y. Bresler, and M. Junge, “Subspace methods for joint sparse
recovery,” 2011, arxiv preprint: arXiv:1004.3071v4.

[15] A. Barvinok. (2005) Measure concentration lecture notes. [Online].
Available: www.math.lsa.umich.edu/ barvinok/total710.pdf


