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Nearness to Local Subspace Algorithm for
Subspace and Motion Segmentation

Akram Aldroubi and Ali Sekmen, Member, IEEE

Abstract— There is a growing interest in computer science,
engineering, and mathematics for modeling signals in terms
of union of subspaces and manifolds. Subspace segmentation
and clustering of high dimensional data drawn from a union
of subspaces are especially important with many practical
applications in computer vision, image and signal processing,
communications, and information theory. This paper presents
a clustering algorithm for high dimensional data that comes
from a union of lower dimensional subspaces of equal and
known dimensions. Such cases occur in many data clustering
problems, such as motion segmentation and face recognition. The
algorithm is reliable in the presence of noise, and applied to the
Hopkins 155 Dataset, it generates the best results to date for
motion segmentation. The two motion, three motion, and overall
segmentaion rates for the video sequences are 99.43%, 98.69%,
and 99.24%, respectively.

Index Terms— Subspace segmentation, motion segmentation,
data clustering.

I. INTRODUCTION

The problem of subspace clustering is to find a nonlinear
model of the form U =

⋃
i∈I Si where {Si}i∈I is a set of

subspaces that is nearest to a set of data W = {w1, ..., wN} ∈
Rd. The model can then be used to classify the data W into
classes called clusters.

In many engineering and mathematics applications, data
lives in a union of low dimensional subspaces [1], [2],
[3], [4]. For instance, consider a moving affine camera
that captures F frames of a scene that contains multiple
moving objects. Let p be a point of one of these objects
and let xi(p), yi(p) be the coordinates of p in frame i.
Define the trajectory vector of p as the vector w(p) =
(x1(p), y1(p), x2(p), y2(p), . . . , xN (p), yN (p))t in R2F . It can
be shown that the trajectory vectors of all points of an object
in a video belong to a vector subspace in R2F of dimension
no larger than 4 [5], [6]. Thus, trajectory vectors in videos can
be modeled by a unionM = ∪i∈IVi of l subspaces where l is
the number of moving objects (background is itself a motion).
It can also be shown that human facial motion and other non-
rigid motions can be approximated by linear subspaces [?],
[?]. Another clustering problem that can be modeled as union
of subspaces is recognition of faces. Specifically, the set of
all two dimensional images of a given face i, obtained under
different illuminations and facial positions, can be modeled as
a set of vectors belonging to a low dimensional subspace Si
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living in a higher dimensional space Rd [7], [8], [4]. A set of
such images from different faces is then a union U =

⋃
i∈I Si.

Similar nonlinear models arise in sampling theory where Rd

is replaced by an infinite dimensional Hilbert space H, e.g.,
L2(Rd) [9], [10], [1], [11].

A. Subspace Segmentation Problem

The goal of subspace clustering is to identify all of the
subspaces that a set of data W = {w1, ..., wN} ∈ Rd is drawn
from and assign each data point wi to the subspace it belongs
to. The number of subspaces, their dimensions, and a basis for
each subspace are to be determined. The subspace clustering
or segmentation problem can be stated as follows:

Let U =
⋃M

i=1 Si where {Si ⊂ H}Mi=1 is a set
of subspaces of a Hilbert space H. Let W =
{wj ∈ H}Nj=1 be a set of data points drawn from
U . Then,
1) determine the number of subspaces M ,
2) determine the set of dimensions {di}Mi=1,
3) find an orthonormal basis for each subspace

Si,
4) collect the data points belonging to the

same subspace into the same cluster.

Note that often the data may be corrupted by noise, may
have outliers or the data may not be complete, e.g., there
may be missing data points. In some subspace clustering
problems, the number M of subspaces or the dimensions of
the subspaces {di}Mi=1 are known. A number of approaches
have been devised to solve the problem above or some of its
special cases.

1) Sparsity Methods: Elhamifar et al. developed an algo-
rithm for linear and affine subspace clustering using sparse
representation of vectors [12], [13]. This method combined
with a spectral clustering, gives good results for motion
segmentation and it is more general than Eldar’s work in com-
pressed sensing [14]. Another method, related to compressed
sensing by Liu et al. [15], [16] finds the lowest rank repre-
sentation of the data matrix. The lowest rank representation
is then used to define the similarity of an undirected graph,
which is then followed by spectral clustering. Favaro et al. in
[?] extends [12], [13], [15], [16].

2) Algebraic Methods: Algebraic methods have also been
used for solving the subspace clustering problem. The Gen-
eralized Principle Component Analysis (GPCA) is one such
method [4], [17], [18], and it can distinguish subspaces of
different dimensions. Since it is algebraic, it is computationally
inexpensive, however, its complexity increases exponentially
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as the number of subspaces and their dimensions increase. It
is also sensitive to noise and outliers. The Robust Algebraic
Segmentation is a more specialized algebraic method devel-
oped by Rao et al. [19] to partition image correspondences
to the motions in a 3-D dynamic scene (that contains 3-D
rigid body and 2-D planar structures) under perspective camera
projection.

3) Iterative and Statistical Methods: Iterative methods have
also been employed for the subspace clustering problem. For
example, the nonlinear least squares [10], [3] and K-subspaces
[20] start with an initial estimation of subspaces (or estimation
of the bases of the subspaces). Then, a cost function reflecting
the “distance” of a point to each subspace is computed and the
point is assigned to its closest subspace. After that, each cluster
of data is used to reestimate each subspace. The procedure is
repeated until the segmentation of data points does not change.
These methods, however, are sensitive to the initialization and
require a good initial partition for convergence to a global
minimum.

The statistical methods such as Multi Stage Learning (MSL)
[2], [21] are typically based on Expectation Maximization
(EM) [22]. The union of subspaces is modeled by a mixture
of probability distributions. For example, each subspace is
modeled by a Gaussian distribution. The model parameters
are then estimated using Maximum Likelihood Estimation.
This is done by using a two-step process that optimizes the
log-likelihood of the model which depends on some hidden
(latent) variables. In E-Step (Expectation), the expectation of
the log-likelihood is computed using the current estimate of
the latent variables. In M-Step (Maximization), the values of
the latent variables are updated by maximizing the expectation
of the log-likelihood. As in the case of the iterative methods,
statistical methods highly depends on initialization of model
parameters or segmentation and they assume that the number
of subspaces as well as their dimensions are known.

The Random Sample Consensus (RANSAC) [23], which
has been applied to numerous computer vision problems, is
successful in dealing with noise and outliers. But it is a
specialized algorithm and assumes that the subspaces have the
same dimension and that this dimension is known.

4) Spectral Clustering Methods: Spectral clustering [24] is
often used in conjunction with other methods as the final step
in clustering. Some of the latest subspace clustering algorithms
(such as [12], [13], [25]) aim at defining an appropriate
similarity matrix between data points which then can be used
for further processing using the spectral clustering method. An
application of spectral clustering to motion segmentation can
be found in [26]. Spectral curvature clustering [27], [28] is a
variant of spectral clustering. [?] provides a spectral clustering
algorithm that aims at reducing the computational complexity.
The motion segmentation algorithm developed by Yan and
Pollefeys [29] first estimates a local linear manifold for each
trajectory data and then computes an affinity matrix based on
the principle subspace angles between each pair of local linear
manifolds. The algorithm then uses spectral clustering for
segmenting the trajectories of independent, articulated, rigid,
and non-rigid body motions. [30] gives a detailed treatment of
various related algorithms.

B. Motion Segmentation Problem

The appendix gives a detailed treatment of motion segmen-
tation as a special case of the subspace segmentation problem.
First, a data matrix W2F×N is constructed using N feature
points that are tracked across F frames. Then, each column
of W (i.e., the trajectory vector of a feature point) is treated
as a data point and it is shown that all of the data points
that correspond to the same moving object lie in an at most
4-dimensional subspace of R2F .

C. Paper Contributions

1) This paper presents a clustering algorithm for high
dimensional data that are drawn from a union of low
dimensional subspaces of equal and known dimensions.
The algorithm is applicable to the motion segmentation
problem and uses some fundamental linear algebra con-
cepts. Some of our ideas are similar to those of Yan
and Pollefeys described above in Section I-A.4. How-
ever, our algorithm differs from theirs fundamentally as
described below:
• Yan and Pollefeys’ method estimate a subspace Si

for each point xi, and then computes the principle
angles between those subspaces as an affinity mea-
sure. In our work, we also estimate a subspace for
each point, however, these local subspaces are used
differently. They are used to compute the distance
between each point xj to the local subspace Si for
the data point xi.

• In their method, an exponential function for affinity
of two points xi and xj is used, and this exponential
function depends on the principle angles between
the subspaces Si and Sj that are associated with xi
and xj , respectively. In our case, the affinity mea-
sure is different. We first find the distance between
xj and Si and then apply a threshold, computed
from the data, to obtain a binary similarity matrix
for all data points.

• The method of Yan and Pollefeys uses spectral
clustering on the normalized graph Laplacian matrix
of the similarity matrix they propose. However, our
approach does not use the spectral clustering on
the normalized graph Laplacian of our similarity
matrix. Instead, our constructed binary similarity
matrix converts our original data clustering problem
to a simpler clustering of data from 1-dimensional
subspaces which can be solved by any traditional
data clustering algorithm.

2) Our algorithm is reliable in the presence of noise, and
applied to the Hopkins 155 Dataset, it generates the
best results to date for motion segmentation. The two
motion, three motion, and overall segmentation rates for
the video sequences are 99.43%, 98.69%, and 99.24%,
respectively.

3) Many of the subspace segmentation algorithms use SVD
to represent the data matrix W as W = UΣV t and
then replace W with the first r rows of V t, where r is
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the effective rank of W . This paper provides a formal
justification for this in Proposition 1.

D. Paper Organization
The organization of the paper is as follows: Section II gives

some preliminaries. In Section III, we devise an algorithm
for the subspace segmentation problem in the special case
where the subspaces have equal and known dimensions. In
Section IV, we apply our algorithm to the motion segmentation
problem, test it on the Hopkins 155 Datasets, explain the
experimental procedure, and present the experimental results.

II. PRELIMINARIES

In this section, we present Proposition 1 which will be used
later to justify that a data matrix W whose columns represent
data points can be replaced with a lower rank matrix after
computing its SVD (i.e. W = UΣV t). It can be paraphrased
by saying that for any matrices A,B,C, a cluster of the
columns of B is also a cluster of the columns of C = AB. A
cluster of C however is not necessarily a cluster B, unless A
has full rank:

Proposition 1. Let A and B be m× n and n × k matrices.
Let C = AB. Assume J ⊂ {1, 2, · · · , k}.

1) If bi ∈ span {bj : j ∈ J} then ci ∈ span {cj : j ∈ J}.
2) If A is full rank and m ≥ n then bi ∈

span {bj : j ∈ J} ⇐⇒ ci ∈ span {cj : j ∈ J}

Proof. The first part can be proved by the simple matrix
manipulation

AB = A
[
b1 · · · bi · · · bk

]
=
[
Ab1 · · · Abi · · · Abk

]
=
[
Ab1 · · · A

∑
j∈J kjbj · · · Abk

]
=
[
Ab1 · · ·

∑
j∈J kjAbj · · · Abk

]
=
[
c1 · · ·

∑
j∈J kjcj · · · ck

]
(II.1)

For the second part, we note that AtA is invertible and
(AtA)−1AtC = B. We then apply part 1 of the proposition.
Note that the same result clearly holds if A is invertible.

The proposition above suggest that–for the purpose of
column clustering–we can replace a matrix C by matrix B
as long as A has the stated properties. Thus by choosing A
appropriately the matrix C can be replaced by a more suitable
matrix B, e.g. B has fewer rows, is better conditioned or is
in a format where columns can be easily clustered.

III. NEARNESS TO LOCAL SUBSPACE APPROACH

In this section, we develop a specialized algorithm for sub-
space segmentation and data clustering when the dimensions
of the subspaces are equal and known. First, a local subspace is
estimated for each data point. Then, the distances between the
local subpaces and points are computed and a distance matrix
is generated. This is followed by construction of a binary
similarity matrix by applying a data-driven threshold to the
distance matrix. Finally, the segmentation problem is converted
to a one-dimensional data clustering problem. The precise
steps are described in Algorithm 1 and in the explanation that
follows.

A. Algorithm for Subspace Segmentation for Subspaces of
Equal and Known Dimensions

The algorithm for subspace segmentation is given in Algo-
rithm 1. We assume that the subspaces have dimension d (for
motion segmentation, d = 4). The details of the various steps
are:

Algorithm 1 Subspace Segmentation
Require: The m × N data matrix W whose columns are

drawn from subspaces of dimension d
Ensure: Clustering of the feature points.

1: Compute the SVD of W as in Equation (III.1).
2: Estimate the rank of W (denoted by r) if it is not

known. For example, using Equation (III.2) or any other
appropriate choice.

3: Compute (Vr)t consisting of the first r rows of V t.
4: Normalize the columns of (Vr)t.
5: Replace the data matrix W with (Vr)t.
6: Find the angle between the column vectors of W and

represent it as a matrix. {i.e., arccos(W tW ).}
7: Sort the angles and find the closest neighbors of column

vector.
8: for all Column vector xi of W do
9: Find the local subspace for the set consisting of xi and

k neighbors (see Equation (III.3)). {Theoretically, k is
at least d−1. We can use the least square approximation
for the subspace (see the section Local Subspace Esti-
mation). Let Ai denote the matrix whose columns form
an orthonormal bases for the local subspace associated
with xi.}

10: end for
11: for i = 1 to N do
12: for j = 1 to N do
13: define H = (dij) =(

||xj −At
ixj ||p + ||xi −At

jxi||p
)
/2

14: end for
15: end for{Build the distance matrix}
16: Sort the entries of the N ×N matrix H from smallest to

highest values into the vector h and set the threshold η to
the value of the T th entry of the sorted and normalized
vector h, where T is such that ‖χ[T,N2] − h‖2 is mini-
mized, and where χ[T,N2] is the characteristic function of
the discrete set [T,N2].

17: Construct a similarity matrix S by setting all entries of H
less than threshold η to 1 and by setting all other entries
to 0. {Build the binary similarity matrix}

18: Normalize the rows of S using l1-norm.
19: Perform SVD St = UnΣn(Vn)t.
20: Cluster the columns of Σn(Vn)t using k-means. Σn(Vn)t

is the projection on to the span of Un.

Dimensionality Reduction and Normalization: Let W be an
m × N data matrix whose columns are drawn from a union
of subspaces of dimensions at most d, possibly perturbed by
noise. In order to reduce the dimensionality of the problem,
we compute the SVD of W

W = UΣV t (III.1)
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where U =
[
u1 u2 · · · um

]
is an m ×m matrix, V =[

v1 v2 · · · vN
]

is an N ×N matrix, and Σ is an m×N
diagonal matrix with diagonal entries σ1, . . . , σl, where l =
min{m,N}.

To estimate the effective rank of W , one can use the modal
selection algorithm [29] to estimate the rank r if it is not
known:

r = argminr

σ2
r+1∑r
i=1 σ

2
i

+ κr (III.2)

where σj is the jth singular value and κ is a suitable constant.
Another possible model selection algorithm can be found in
[31]. UrΣr(Vr)t is the best rank-r approximation of W =
UΣV t, where Ur refers to a matrix that has the first r columns
of U as its columns and Vr refers to the first r rows of V t. In
the case of motion segmentation, if there are k independent
motions across the frames captured by a moving camera, the
rank of W is between 2(k + 1) and 4(k + 1).

We can now replace the data matrix W with the matrix (Vr)t

that consists of the first r rows of V t (thereby reducing the
dimensionality of data). This step is justified by Proposition 1.
Also, [17] discusses the segmentation preserving projections
and states that the number of subspaces and their dimensions
are preserved by random projections, except for a zero measure
set of projections. It should also be noted that this step
reduces additive noise as well, especially in the case of light-
tailed noise, e.g., Gaussian noise. The number of subspaces
corresponds to the number of moving objects. Vidal et al. [32]
uses an alternative method (power method) for SVD to project
incomplete motion data (trajectories) into a 5-dimensional
subspace and then applies GPCA and spectral clustering for
subspace segmentation. Dimensionality reduction corresponds
to Steps 1, 2, and 3 in Algorithm 1.

Another type of data reduction is normalization.
Specifically, the columns of (Vr)t are normalized to lie
on the unit sphere Sr−1. This is because by projecting
the subspace on the unit sphere, we effectively reduce
the dimensionality of the data by one. Moreover, the
normalization gives equal contribution of the data matrix
columns to the description of the subspaces. Note that the
normalization can be done by using lp norms of the columns
of (Vr)t. This normalization procedure corresponds to Steps
4 and 5 in Algorithm 1.

Local Subspace Estimation: The data points (i.e., each
column vector of (Vr)t) that are close to each other are
likely to belong to the same subspace. For this reason,
we estimate a local subspace for each data point using its
closest neighbors. This can be done in different ways. For
example, if the l2-norm is used for normalization, we can
find the angles between the points, i.e., we can compute
the matrix arccos(Vr × (Vr)t). Then we can sort the angles
and find the closest neighbors of each point. If we use
lp-norm for normalization, we can generate a distance matrix
(aij) = (||xi − xj ||p) and then sort each column of the
distance matrix to find the neighbors of each xi, which is the
ith column of (Vr)t.

Once the distance matrix between the points is generated,

we can find, for each point xi, a set of k + 1 ≥ d points
{xi, xi1 , ..., xik} consisting of xi and its k closest neighbors.
Then we generate a d-dimensional subspace that is nearest (in
the least square sense) to the data {xi, xi1 , ..., xik}. This is
accomplished by using SVD

X = [xi xi1 ... xik ] = AΣBt. (III.3)

Let Ai denote the matrix of the first d columns of A
associated with xi. Then, the column space C(Ai) is the
d-dimensional subspace nearest to {xi, xi1 , ..., xik}. Local
subspace estimation corresponds to Steps 6 to 10 in Algorithm
1.

Construction of Binary Similarity Matrix: So far, we
have associated a local subspace Si to each point xi. Ideally,
the points and only those points that belong to the same
subspace as xi should have zero distance from Si. This
suggests computing the distance of each point xj to the local
subspace Si and forming a distance matrix H .

The distance matrix H is generated as H = (dij) =(
||xj −At

ixj ||p + ||xi −At
jxi||p

)
/2.

A convenient choice of p is 2. Note that as dij decreases, the
probability of having xj on the same subspace as xi increases.
Moreover, for p = 2, ||xj −At

ixj ||2 is the Euclidean distance
of xj to the subspace associated with xi.

Since we are not in the ideal case, a point xj that belongs
to the same subspace as xi may have non-zero distance to Si.
However, this distance is likely to be small compared to the
distance between xj and Sk if xj and xk do not belong to
the same subspace. This suggests that we compute a threshold
that will distinguish between these two cases and transform
the distance matrix into a binary matrix in which a zero in the
(i, j) entry means xi and xj are likely to belong to the same
subspace, whereas (i, j) entry of one means xi and xj are not
likely to belong to the same subspace.

To do this, we convert the distance matrix H = (dij)N×N
into a binary similarity matrix S = (sij). This is done by
applying a data-driven thresholding as follows:

1) Create a vector h that contains the sorted entries of
HN×N from smallest to highest values. Scale h so that
its smallest value is zero and its largest value is one.

2) Set the threshold η to the value of the T th entry of the
sorted vector h, where T is such that ‖χ[T,N2] − h‖2
is minimized, and where χ[T,N2] is the characteristic
function of the discrete set [T,N2]. If the number of
points in each subspace are approximately equal, then
we would expect about N

n points in each subspace, and
we would expect N2

n2 small entries (zero entries ideally).
However, this may not be the case in general. For this
reason, we compute the data-driven threshold η that
distinguishes the small entries from the large entries.

3) Create a similarity matrix S from H such that all entries
of H less than the threshold η are set to 1 and the others
are set to 0.

The construction of binary similary corresponds to Steps 11
to 17 in Algorithm 1. In [29], Yan and Pollofeys uses chordal
distance (as defined in [33]) between the subspaces F(xi) and
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G(xj) as a measure of the distance between points xi and xj

d2c(F ,G) =

p∑
i=1

sin2(θi) (III.4)

where {θi}pi=1 are the principle angles between p-dimensional
local subspaces F and G with θ1 ≤ · · · ≤ θp. In this approach,
the distance between any pairs of points from F and G is the
same. We find distances between points and local subspaces
and our approach distinguishes different points from the same
subspace. To see this, let v ∈ span{QF}, ||v||2 = 1, where the
columns of QF form an orthonormal basis for F . Thus v =
QFx for some x with ||x||2 = 1. Let QG form an orthonormal
basis for G, then the Euclidian distance from v to G squared
is given by

‖v − PG(v)||22 = ‖QFx−QGQt
GQFx‖22

= ||x||22 − xtQt
FQGQ

t
GQFx

= ||x||22 − xtY ΣZtZΣtY tx

= xtY Y tx− xtY ΣΣtY tx

= xtY Y tx− xtY Σ2Y tx

= z
(
I − Σ2

)
z

where Y ΣZt is the SVD for Qt
FQG and z := Y tx. Thus,

using the relation cos θi = σi between principle angles and
singular values [34], we get

d2(v,G) =

p∑
i=1

z2i sin2(θi). (III.5)

Hence, our approach discriminates distances from points
in F to subspace G. We also have

∑p
i=1 z

2
i sin2(θi) ≤∑p

i=1 sin2(θi) and therefore dc is more sensitive to noise.
Using Eq. III.5, we get 0 < sin θ1 ≤ d ≤ sin θp. Assuming

a uniform distribution of samples from F and G, h can be
approximated by a function depicted in Figure III-A. The goal
is to find the threshold at the jump discontinuity T from 0
to sin θ1. Our method minimizes the highlighted area. Under
this model, a simple computation shows that our data driven
thresholding algorithm picks Td = T for sin θ1/ sin θp ≥ 1/2,
e.g., if θ1 ≥ 30o. In other situations, our algorithm overshoots
in estimating the threshold index depending on θ1 and θp.

Fig. 1
LINEAR MODELING FOR h

Segmentation: The last step is to use the similarity matrix
S to segment the data. To do this, we first normalize the
rows of S using l1-norm, i.e., S̃ = D−1S, where D is a

diagonal matrix (dij) =
∑N

j=1 sij . Note that S and S̃ are
not symmetric. S̃ is related to the random walk Laplacian Lr

(S̃ = I−Lr) [?]. Although other lp normalizations are possible
for p ≥ 1, however, because of the geometry of the l1 ball,
l1-normalization brings outliers closer to the cluster clouds
(distances of outliers decrease monotonically as p decreases
to 1). Since SVD (which will be used next) is associated
with l2 minimization it is sensitive to outliers. Therefore l1
normalization works best when SVD is used.

Observe that the initial data segmentation problem has now
been converted to segmentation of n 1-dimensional subspaces
from the rows of S̃. This is because, in the ideal case, from the
construction of S̃, if xi and xj are in the same subspace, the
ith and jth rows of S̃ are equal. Since there are n subspaces,
then there will be n 1-dimensional subspaces.

Now, the problem is again a subspace segmentation prob-
lem, but this time the data matrix is S̃ with each row as a data
point. Also, each subspace is 1-dimensional and there are n
subspaces. Therefore, we can apply SVD again to obtain

S̃t = UnΣn(Vn)t.

Using Proposition 1, it can be shown that Σn(Vn)t can replace
S̃t and we cluster the columns of Σn(Vn)t, which is the
projection of S̃ on to the span of Un. Since the problem is only
segmentation of subspaces of dimension 1, we can use any
traditional segmentation algorithm such as k-means to cluster
the data points. The segmentation corresponds to Steps 18 to
20 in Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. The Hopkins 155 Dataset

The Hopkins 155 Dataset [18] was created as a benchmark
database to evaluate motion segmentation algorithms. It con-
tains two (2) and three (3) motion sequences. There are three
(3) groups of video sequences in the dataset: (1) 38 sequences
of outdoor traffic scenes captured by a moving camera, (2)
104 indoor checker board sequences captured by a handheld
camera, and (3) 13 sequences of articulated motions such as
head and face motions. Cornerness features that are extracted
and tracked across the frames are provided along with the
dataset. The ground truth segmentations are also provided for
comparison.

B. Results

Tables I, II, and III display some of the experimental
results for the Hopkins 155 Dataset. Our Nearness to Local
Subspace (NLS) approach have been compared with six (6)
motion detection algorithms: (1) GPCA [17], (2) RANSAC
[23], (3) Local Subspace Affinity (LSA) [29], (4) MLS [2],
[21], (5) Agglomerative Lossy Compression (ALC) [35], and
(6) Sparse Subspace Clustering (SSC) [12]. An evaluation of
those algorithms is presented in [12] with a minor error in the
tabulated results for articulated three motion analysis of SSC-
N. SSC-B and SSC-N correspond to Bernoulli and Normal
random projections, respectively [12]. The minor error in [12]
is the listing of error as 1.42% for articulated three motions.
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It is replaced with 1.60% in Table II. In Tables I-III, we used
the number of neighbors k = 3. Since each point is drawn
from a 4-dimensional subspace, a minimum of 3 neighbors
are needed to fit a local subspace for each point. Using the
same assumption as the algorithms that we compare with,
we take the rank of the data matrix to be 8 for two motion
and 12 for three motion. Table I displays the misclassification
rates for the two motions video sequences. NLS outperforms
all of the algorithms for the checkerboard sequences, which
are linearly independent motions. The overall misclassification
rate is 0.57%. This is 24% better than the next best algo-
rithm. Table II shows the misclassification rates for the three
motion sequences. NLS has 1.31% misclassification rate and
performs 47% better than the next best algorithm (i.e. SSC-N).
Table III presents the misclassification rates for all of the video
sequences. Our algorithm NLS (with 0.76% misclassification
rate) performs 39% better than the next best algorithm (i.e.
SSC-N). In general, our algorithms outperforms SSC-N, which
is given as the best algorithm for the two and three motion
sequences together.

Table IV shows the performance of the data driven threshold
index Td compared to various other possible thresholds. We
provide the results for ±20%, ±10%, and ±5% deviations
from Td.

Table V displays the robustness of the algorithm with
respect to the number of neighbors k. The second portion of
the table excludes one pathological sequence from two-motion
checker sequence for k = 4 and k = 5. When k is set to 3
- which is the minimum number of neighbors required - the
algorithm performs better.

Table VI displays the increase in the performance of the
original LSA algorithm when our distance/similarity and seg-
mentation techniques are applied separately. Both of them
improves the performance of the algorithm, however, the new
distance and similarity combination contributes more than the
new segmentation technique.

Recently, the Low-Rank Representation (LRR) in [15], [16]
was applied to the Hopkins 155 Datasets and it generated an
error rate of 3.16%. The authors state that this error rate can
be reduced to 0.87% by using a variation of LRR with some
additional adjustment of a certain parameter.

V. CONCLUSIONS

The NLS approach described in this paper can handle noise
effectively, but it works only in special cases of subspaces
segmentation problems (i.e., subspaces of equal and known
dimensions). Our approach is based on the computation of a
binary similarity matrix for the data points. A local subspace
is first estimated for each data point. Then, a distance matrix
is generated by computing the distances between the local
subspaces and points. The distance matrix is converted to
the similarity matrix by applying a data-driven threshold. The
problem is then transformed to segmentation of subspaces of
dimension 1 instead of subspaces of dimension d. The algo-
rithm was applied to the Hopkins 155 Dataset and generated
the best results to date.
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Checker (78) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 6.09% 2.57% 6.52% 4.46% 1.55% 0.83% 1.12% 0.23%
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ALL SEQ INCLUDED 1 SEQ EXCLUDED
Checker-2 (78) k=5 k=4 k=3 k=5 k=4

Average 0.65% 1.59% 0.23% 0.23% 0.97%
Median 0.00% 0.00% 0.00% 0.00% 0.00%

Traffic-2 (31) k=5 k=4 k=3 k=5 k=4
Average 1.56% 1.66% 1.40% 1.56% 1.66%
Median 0.00% 0.00% 0.00% 0.00% 0.00%

Articulated-2 (11) k=5 k=4 k=3 k=5 k=4
Average 2.44% 2.33% 1.77% 2.44% 2.33%
Median 0.00% 0.00% 0.88% 0.00% 0.00%

All-2 (120 seq) k=5 k=4 k=3 k=5 k=4
Average 1.04% 1.75% 0.57% 0.77% 1.35%
Median 0.00% 0.00% 0.00% 0.00% 0.00%

Checker-3 (26) k=5 k=4 k=3 k=5 k=4
Average 0.44% 0.43% 0.87% 0.44% 0.43%
Median 0.24% 0.22% 0.35% 0.24% 0.22%

Traffic-3 (7) k=5 k=4 k=3 k=5 k=4
Average 6.59% 7.18% 1.86% 6.59% 7.18%
Median 1.81% 4.37% 1.53% 1.81% 4.37%

Articulated-3 (2) k=5 k=4 k=3 k=5 k=4
Average 20.54% 4.05% 5.12% 20.54% 4.05%
Median 20.54% 4.05% 5.12% 20.54% 4.05%

All-3 (35 seq) k=5 k=4 k=3 k=5 k=4
Average 2.82% 1.98% 1.31% 2.82% 1.98%
Median 0.65% 0.47% 0.45% 0.65% 0.47%

All (155 seq) k=5 k=4 k=3 k=5 k=4
Average 1.50% 1.81% 0.76% 1.30% 1.50%
Median 0.21% 0.00% 0.20% 0.21% 0.00%

TABLE V
% SEGMENTATION ERRORS - NLS ALGORITHM FOR VARIOUS k.

Checker-2 (78) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 2.57% 0.97% 1.71%
Median 0.27% 0.00% 0.00%

Traffic-2 (31) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 5.43% 1.59% 4.99%
Median 1.48% 1.11% 0.65%

Articulated-2 (11) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 4.10% 2.10% 4.26%
Median 1.22% 0.43% 1.21%

All-2 (120 seq) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 3.45% 1.22% 2.27%
Median 0.59% 0.00% 0.35%

Checker-3 (26) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 5.80% 2.66% 4.67%
Median 1.77% 0.30% 0.91%

Traffic-3 (7) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 25.07% 6.38% 24.46%
Median 23.79% 1.28% 31.20%

Articulated-3 (2) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 7.25% 6.18% 7.25%
Median 7.25% 6.18% 7.25%

All-3 (35 seq) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 9.73% 2.45% 8.78%
Median 2.33% 0.20% 1.94%

All (155 seq) LSA(Original) LSA(New Dist/Similarity) LSA(New Segmentation)
Average 4.94% 1.84% 3.96%
Median 0.90% 0.18% 0.61%

TABLE VI
% SEGMENTATION ERRORS FOR LSA WITH VARIOUS PARAMETERS.
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