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Abstract—In this letter, the performance of mismatched likeli-
hood ratio detectors for binary Bayesian hypothesis testing prob-
lems is considered. Based on large deviation theory, a method for
achieving the maximum Bayesian error exponent for a mismatched
likelihood ratio detector is presented. It is shown that the max-
imum Bayesian error exponent is given by generalized Chernoff
information, which is an extension of the Chernoff information to
the case of two mismatched distributions and has similar proper-
ties to those of the original Chernoff information. As an application
example, energy detection under the Gauss—Markov signal model,
is considered. It is shown that the generalized Chernoff informa-
tion of energy detection, which is achieved by optimally choosing
the detection threshold, is close to the original Chernoff informa-
tion for the considered signal model, and thus, the performance of
suboptimal energy detection can be improved significantly simply
by choosing the detection threshold judiciously.

Index Terms—Chernoff information, energy detection, error
exponent, large deviation theory, mismatched likelihood ratio
detection.

I. INTRODUCTION

OR binary Bayesian detection problems, the optimal

decision rule that minimizes the Bayesian error proba-
bility is the log-likelihood ratio test (LLRT). However, due to
inaccurate distribution information or complexity reasons, the
exact LLRT cannot be adopted in many applications. In certain
cases, the adopted suboptimal detector can be represented as a
mismatched (log-)likelihood ratio detector, i.e., an LLRT based
on null and alternative distributions that are not the same as
true underlying distributions [2]. Several works have been done
in this area under the framework of minimax robust detection,
which focuses on finding an optimal detector for the least favor-
able condition within a given class of underlying distributions
[3]-[7]. However, not much attention was given to analyzing
the performance of mismatched detectors. In this letter, we
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focus on the mismatched detection problem itself, analyze the
performance of mismatched likelihood ratio detectors, and
propose a new asymptotic performance measure, referred to as
generalized Chernoff information, for mismatched likelihood
ratio detectors, based on large deviations theory. Whereas the
Bayesian error exponent is given by the Chernoff information
between the true null and alternative distributions [8], the max-
imum Bayesian error exponent for a mismatched likelihood
ratio detector is given by the proposed generalized Chernoff in-
formation, which is obtained by a certain equalizer rule applied
to the Fenchel-Legendre transforms of mismatched log-gener-
ating functions and attained by optimally choosing the detection
threshold. We show that the generalized Chernoff information
is nonnegative and symmetric between the null and alternative
distributions and reduces to the original Chernoff information
if the detection statistic is the true log-likelihood ratio. For an
application example, we consider the energy detection of a
zero-mean stationary Gaussian signal in white Gaussian noise.
In this case, the energy detector is a mismatched likelihood
ratio detector when the signal to be detected is not independent
and identically distributed (i.i.d.). By applying the proposed
method, we compute the generalized Chernoff information
for the energy detection under the Gauss—Markov signal cor-
relation model. Under the considered Gauss—Markov signal
model, numerical results show that the generalized Chernoff
information is close to the Chernoff information. Thus, there
is only a small loss in the error exponent simply by properly
choosing the detection threshold even if the signal correlation
is neglected.

The remainder of the letter is organized as follows. In
Section II, we describe the data model and formulate the
problem. Generalized Chernoff information for mismatched
detectors is defined and analyzed in Section IIl. Then, it is
applied to the energy detection for stationary Gaussian signals
under the Gauss—Markov signal model in Section IV, followed
by conclusion in Section V.

II. DATA MODEL AND PROBLEM STATEMENT

We consider the following binary hypothesis problem:
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where x,, := [21, %2, ..., Zp] is the random observation vector
of size n. Under the Bayesian criterion, the optimal detector for
the problem (1) is the (normalized) LLRT:

1 " >M g
T, := —log <p—1, (X)) - —log To _. T, )
n Po.n(X) ) <py T

where 7;, § = 0,1, is the prior probability for the hypoth-
esis H;. The maximum error exponent (or exponential decaying
rate) of the Bayesian error probability P, for the optimal de-
tector is given by the Chernoff information [8]:

1
— lim —log P,

n—oo 1
1
=— inf lim —lo ¢ (x)p Y (x)dx
Jnt i~ log [ 5 G0t (x)

= C(]’O:pl)-, (3)

where P, = 7y Py + 71 Pys and Pp and P,; are the false alarm
and miss detection probabilities, respectively. When there is un-
certainty in the underlying null and/or alternative distributions
or when the complexity of the optimal detector is too high, one
may employ a suboptimal detector, and in many cases the sub-
optimal detector is represented by a mismatched likelihood ratio

detector [2]:
e 1 Y i >Hl
7, = Loy (220 2 @)
n Pon(X) ) <m,

which discriminates the two incorrect hypotheses

7:ZO P Xp I;O,n
7—fl Xy ]N)l,'n; (5)

In the following section, we shall derive the maximum error
exponent for this mismatched detector and evaluate the asymp-
totic performance of this mismatched detector by using the large
deviation principle.

III. GENERALIZED CHERNOFF INFORMATION

To obtain the maximum Bayesian error exponent for the mis-
matched detector, we first need the log-generating functions
under the null and alternative hypotheses:

Ag(u) = lim = log E{exp(nul,) | Ho}

n—oo

lim %log [0 0 (9] ()
©)

lim — log E{exp(nul,)|Hi}

n—oo 1

S 1o [ 510001 (O] 1 ()
™

One can easily show by applying Holder’s inequality that Ao
and A; are convex. Note that AU( )= Al( } = 0. For the mis-
matched likelihood ratio detector (4), the error exponents for
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the false alarm and miss detection probabilities are given by the
Girtner-Ellis theorem [8]. That is, the error exponents of the
false alarm and miss detection probabilities are obtained from
the Fenchel-Legendre transforms of the corresponding log-gen-
erating functions under certain mild conditions:!:

Ep(r) = - lim E L log(Pr{T,, > 7lHo}) = inf Ao( );

(®)
En(r) 2 — lim 5 log(Pr{T,, < 7[H1}) = inf A1(1),

)

where A*(t),i = 0,1 is the Fenchel-Legendre transform of A;,
ie.,

Ar(t) = sup{tu — A;(u)}. (10)

Since A;(u) is convex, the supremum of {tu — A;(u)} occurs
when w satisfies (d)/(du)A;(u) = t. Thus, an intuitive expla-
nation for the Fenchel-Legendre transform is the negative value
of y-intercept of the tangent line of A; (1) that has slope ¢.

Lemma 1: Suppose that Ay (u) is differentiable on the interior
of its domain. Then, ]\ﬁ(t) is a non-decreasing function of ¢ for
t > (d)/(du)Ag(0).

Proof: (d)/(du)Ag(u) is an increasing function since Ag

is convex. Therefore, for t > (d)/(du)Ag(0), the supremum of
{tu — Ag(u)} occurs atu > 0, i.e.,

AG() = qup{fu — Ao(u)} = sup{tu — Ag(u)}. (11)
u>0
Lett’ > t(> (d)/(du)Ay(0)). Then, for any u > 0 we have
tu — Ag(u) < t'u — Ag(u) < sup{t'u — Ag(u)}.  (12)
u>0
Therefore, we have A%(t) = sup, soitu — Ao(u)} <
AS(#). n

Using similar arguments, we also have the following lemma.
Lemma 2: Suppose that A, is differentiable on the interior

of its domain. Then, A% T(t) is a non-increasing function of ¢ for
< ((l)/(du)Al(O).

Thus, by Lemmas 1 and 2, we have Ep(7) = inf;>, /~\3 (t) =
Af(7) and Ep(r) = infir A}(t) = AJ(r). Since the
Bayesian error probability is a weighted sum of the false alarm
and miss detection probabilities, i.e., P. = woPr + w1 P,
it is asymptotically dominated by the term that has the lower
decaying rate. Thus, the Bayesian error exponent F(7) is given

by
E(r) = min{Ep(7), Epr (1)} = min{ A} (1), AT(1)}.
(13)
Definition 1: (Generalized Chernoff information) The gener-

alized Chernoff information C(py — po; p1 — p1) for the mis-
matched distributions gy ,, and p1 ,, is defined as the maximum

I'We assume that for the considered problem, the conditions are satisfied.
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Bayesian error exponent of the mismatched likelihood ratio de-
tector (4), i.e.,

C(po — Posp1 — P1) = mTaxE(r)
= max min{]\E(T), /NXT(T)} (14)

The following theorem states how to compute the generalized
Chernoff information.

Theorem 1: The generalized Chernoff information for the
mismatched distributions pg,, and pi ., (or equivalently max-
imum Bayesian error exponent for the mismatched likelihood
ratio detector (4)) is attained by the optimal threshold 7 sat-
isfying the following equalizer rule:

A (Topt) = AT (Topt), (15

and the optimal threshold is obtained by simultaneously solving
the following two equations of ug and w1:

d - d 5
g oluo) = A (), 1o
[]\o(uo) + (u— UO)%]\U(UU)} u=0

_ [Al(ul) + (u— m)%&(uﬂ] o a7

as Topy = (d)/(du)Ao{uo) = (d)/(du)Aq(uq).

Proof: The maximum FE(r) is attained when
min{A%(7), A3(r)} is maximized. Since A%(7) is a non-de-
creasing function of 7, and AT(T) is a non-increasing function
of 7 by Lemmas 1 and 2, the minimum of the two is maximized
when they are the same. Therefore, we have (15). By the
properties of the Fenchel-Legendre transform, 7 is the slope of
the tangent line to A;(u), and A¥(7) is the y-intercept of the
tangent line. Thus, for (15), two tangent lines (one for Ag (u)
and the other for A4 (u)) should have the same slope, yielding
(16), and the same y-intercept, yielding (17). [ |

Fig. 1 illustrates the situation. In the case of the exact LLRT,
the optimal threshold is zero, 7* = 0, in the asymptotic regime,
regardless of the prior probabilities. Furthermore, in this case,
we have Aj(u) = Ag(u + 1) for the exact distributions. That
is, A1{u) is a shifted version of Ap(u). Thus, the maximum
Bayesian error exponent is attained by 7* = 0. However, in the
mismatched case, the zero threshold 7*, which is optimal for the
exact LLRT, is always suboptimal for the mismatched detection.
Now, we provide a few properties of the generalized Chernoff
information. First, if we use exact distributions, i.e., p; = p; for
i = 0,1, then 74, becomes 7% = 0 and C(py — Po;p1 — P1)
is equivalent to the original Chernoff information C{(po; p1 ) for
exact distribution. This is because, in the case of exact distribu-
tions, (6) and (7) become exact log-generating functions. The
nonnegativity of the generalized Chernoff information is easily
shown since A%(#) = sup, {tu — A;(u)} > 0. This is because
atu = 0, ¢-0— A;(0) = 0 and A¥(¢) has the monotone property
by Lemmas 1 and 2. Finally, the generalized Chernoff informa-
tion is symmetric with respect to pg ,, and p1 ,,, as the original

A1 (u)

4

y-intercept: E(Topt

U1 uo

slope: Topt
Fig. 1. Graphical illustration for 7, and E, .
Chernoff information, provided that the mismatched distribu-

tions are also switched accordingly. To see this, letI';,2 = 0,1
be the switched log-generating functions:

To(w) = Jim, 1105 (000 1G] ()i
— () (18)
.1 . . —u
Caa) = Jim 105 [ [0 () 1 (0)]"pon (x)dx
= Ao(—w). (19)

The corresponding Fenchel-Legendre transform can be ex-
pressed in terms of A} as

T3t = sgp{tu —To(u)} = sgp{tu —A(—u)}

= sup{—tu — As(u)} = AT(—1). (20)
Similarly, T%5(¢) = Aj(—t). Therefore, by Lemmas 1 and
2, To(t) is a non-decreasing function of # and T'y(¢) is a
non-increasing function of ¢ for (d)/(du)Ag(0) < t <
(d)/(du)A1(0). Therefore, the maximum error exponent (i.e.,
generalize Chernoff information) is achieved if T'j(7) = I'{ (1)
or equivalently AZ(—7) = AZ(—7). The optimal threshold
for the switched problem is 7 = —7,,, and the generalized
Chernoff information C'(py — p1;p0 — Po) is given by

C(p1 — P1;p0 — Do)
= FS(*TOPt)

= A (7opt) = C(po — Po; p1 — P1)- 2n

IV. APPLICATION: THRESHOLD OPTIMIZATION
FOR ENERGY DETECTION

In the previous section, we introduced the generalized Cher-
noff information as the maximum Bayesian error exponent for
a mismatched Bayesian detection problem and showed that
the generalized Chernoff information is achieved simply by
choosing the detection threshold optimally. In this section, we
provide a useful application example. Here, we consider the
detection of a stationary Gaussian process in white Gaussian
noise. This problem can be formulated in terms of the power
spectra as follows:

Ho: S.(w)=So(w)=0? —7<w<m,
Hi: S,(w)= Si(w) =625, (w) + 02,
—rm<w<<m, (22)
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where S, (w) and o2 indicate the signal and noise power spectra,
respectively. Here, we assume that the normalized signal spec-
trum Sy(w) has unit power, i.e., (1)/(27) [T Ss(w)dw = 1.
Thus, the total signal-to-noise ratio (SNR) is given by
(6%)/(s?). In many applications, due to the unavailability
of S;(w) or the complexity of the exact LLRT, simply energy
detection is used. The energy detection neglecting the signal
correlation is an example of mismatched detection and can be
expressed as

7:[() .
7:[1 .

-7 <w <7,

Sp(w) = o =: Py,

Sy
S, Sl(w) =02 +o0% =P,

-1 < w< 7.
(23)

By the Toeplitz distribution theorem, the log-generating func-
tions are derived as

) 1 /7T u 1—u
Ao(u) = _E o _10g (m * m)
+u log §1(w) + (1 —u)log SO(W)] dw (24)
) 1 T 1 U, U
Ax(u) = Cdn ), _log (51(W) " Si(w) So(w)>

+log S1(w) + ulog 81 (w) — ulog So(w)} dw.
(25)

Regarding the log-generating functions for the distributions
(23), we have the following property.

Lemma 3: For flat spectra So(w) = P and Sy (w) = P, =
(1)/(27) |7, S (w)dw = (1)/(2m) [T, S1(w)dw over [~ )
with Py < P, we have Ay (u) > Ag(u + 1) for all u.

Lemma 3 can be proved by using the concavity of logarithm
and Jensen’s inequality. Based on this result, we provide a gen-
eral property of the optimal threshold 7,,,¢ for the energy detec-
tion (23).

Theorem 2: For the energy detection (23), we have 7,,¢ < 0.

Proof: Suppose that 7 > (. Let u; € R be such that u; =
argsup, {7u — A1(u)}. Then

A7) =7uy — /~\1(7/,1) < Tuqp — /NXo(ul +1)
m(ug + 1) — Ag(ug + 1) < sup{ru — Ag(u)}

A

Il

>
=55
—

\]
N

(26)

where the first inequality is valid by Lemma 3. Since A%(7) <
Aj(7), the equalizer rule (15) is not satisfied for 7 > 0 and we
have the claim. [ |

Interestingly, Theorem 2 states that we should always favor
the alternative hypothesis when we use energy detection ne-
glecting the signal correlation, whatever the signal correlation
is.

Fig. 2 shows the error exponents of three detectors, the
exact LLRT, the proposed detector and the energy detector, for
detection of the Gauss—Markov signal s[n] with correlation
E{s[i]s[j]} = al"~7! in white Gaussian noise. As seen in Fig. 2,
a noticeable loss for the suboptimal threshold 7% = 0 exists
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Error Exponents: Gauss-Markov Signal Model

« SNR=0.1
H < SNR=1
1 A SNR=10
O  SNR =100
------- Energy detector with 1=0
0.8 — — — Energy detector with T = Topt
g Exact LLRT
c
g o06f
w
g
O 04t
0.2r

Fig. 2. Gauss—Markov signal model: Error exponent versus correlation coeffi-
cient a.

in the strong correlation region. However, the error exponent
achieved by the optimal detection threshold is almost the same
as the original Chernoff information with the exact LLRT.
Although it is not clearly seen in Fig. 2, the performance loss
of neglecting signal correlation is severer at low SNR [9].

V. CONCLUSION

In this letter, we have investigated the performance of
mismatched likelihood ratio detectors for binary Bayesian
hypothesis testing problems. Using large deviation theory,
we have derived the maximum Bayesian error exponent for
a mismatched detector and have shown that the maximum
Bayesian error exponent is given by the generalized Chernoff
information, which is achieved by optimally designing the
detection threshold for the mismatched detector. Furthermore,
we have presented a set of equations to compute the optimal
detection threshold. We have provided an example of energy
detection under the Gauss—Markov signal model. Numerical
results show that the maximum error exponent for energy
detection ignoring the signal correlation can be close to the
original Chernoff information simply by choosing the detection
threshold judiciously.
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