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New Entries to the SPL EDICS for
Audio and Acoustic Signal Processing

Mads Græsbøll Christensen, Senior Member, IEEE, Rudolf Rabenstein, Member, IEEE

Abstract—This letter describes some of the new entries to the
Signal Processing Letters (SPL) Editors Information Classifica-
tion Scheme (EDICS) for the topic Audio and Acoustic Signal
Processing.

I. INTRODUCTION

The Editors Information Classification Scheme (EDICS) for
the IEEE Signal Processing Letters (SPL) in the previous
version from the year 2005 [1] contained only one entry
for audio: AEA-AUEA Audio and Electroacoustics. While this
term still breathes the air of vacuum tube amplifiers and
speaker cabinets, the recent years have brought new processors
with even higher computing power, data storage capacities
beyond the terabyte range, higher data rates for internet up-
and download, and a variety of different kinds of audio
interfaces. All these developements come at ever falling prices
and new audio-related products penetrate the market quickly.

In the past, the term electroacoustics described a technology
for recording studios, stage reproduction and cinemas. But
today audio signal processing is found everywhere, in home
theatres, home and mobile recording, mobile devices, in pas-
senger cars, and in advanced hearing aids. Traditional audio
storage media are being replaced by internet access to cloud
storage. The technology for spatial recording, reproduction,
and for the analysis of the acoustic environment is advancing.
Research at the interface between hearing system and brain
provides computational models for human sound perception.

To cope with the emerging diversity of signal processing
applications in audio, the recent update of the SPL EDICS
from September 2012 [2] includes now a number of new
entries. Some of these are described below.

II. EDICS FOR AUDIO AND ACOUSTIC SIGNAL
PROCESSING

The following subsections introduce some of the new sub-
topics for Audio and Acoustic Signal Processing. Only a
rough categorization of the main activities, current and future
challenges as well as future possibilities are given. Since
no account of past achievements is intended, there are no
references to individual contributions.

The naming scheme is reminiscent of the previous desig-
nation Audio and Electroacoustics (AEA). The abbreviation
AEA has been kept for compatibility; it stands now for Audio
and Acoustic Signal Processing.

A. AEA-RES: Audio and Speech Signal Restoration

Audio and speech signal restoration deals with restoring, or
generally improving, the quality of recorded speech and audio

signals. Over time, the quality of signals stored on gramophone
records or analog tapes may have degraded in various ways,
and imperfections in equipment may have introduced annoying
artifacts, like clicks, hiss, crackle or buzz in various steps of
the recording process. Moreover, parts of recordings may be
missing, due to, for example, the medium being physically
broken, and this problem has become no less relevant with
the usage of block-based coding techniques. Restoration aims
at removing these artifacts without destroying the original
contents.

A well-known application of audio restoration is in foren-
sics, a prominent example being the audio recordings of the
assassination of President J. F. Kennedy, which some hoped
could help shed light on how many shots were fired. Other
important applications include the preservation of important
historic recordings, and remastering of old music recordings.
Many national broadcasting agencies have digitized their entire
archives, and so have many libraries, and most music is today
distributed in a digital form.

Depending of the exact type of artifact to be removed,
various approaches have been pursued. Removal of additive
noise of a stochastic nature using linear filtering is a fairly
general and well-studied problem whose roots go back as
far as the work of Norbert Wiener. Other problems and the
approaches used to deal with them are more specific to speech
and audio signals and the way they have traditionally been
recorded and stored. Clicks are, for example, typically dealt
with in a two-step fashion where first the location of the
corrupted samples are located, whereafter they are replaced by
estimates obtained using a model of the audio signal. Some
of the most successful methods have been based on models
like auto-regressive (AR), auto-regressive moving average
(ARMA), or sinusoidal models. These models have been used
to estimate corrupted samples using, for example, interpolation
in the parameter domain or using a Bayesian framework.

In the past decade, a number of things have happened that
may lead to new advances in speech and audio signal restora-
tion. Firstly, Voice over IP (VoIP) has become prevalent. Some
of the problems encountered in transmission of speech over the
Internet are similar to those encountered in restoration, namely
that parts of the signal may be missing or corrupted. In VoIP,
the problem of replacing such parts is referred to as packet-
loss concealment, and many new methods have surfaced for
dealing with this problem, and it is possible that they can
serve as inspiration for new methods for restoration (or vice
versa). Secondly, it has been (re-)discovered that signals can
be sampled below the Nyquist rate, provided that they are
sparse in some domain. This has led to the principle known
as compressed sensing. In compressed sensing, sampling is
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performed by forming (possibly random) linear combinations
of the signal to be sampled. The signal can then be recon-
structed (under certain conditions) using sparse approximation
methods. This has led to a flurry of activity in finding new
methods for sparse approximations. A special case of such
a sampling process is one where random samples are lost,
and, hence, it is possible, in principle, to apply sparse ap-
proximation techniques to restoration problems. Thirdly, quite
some progress has been made in estimation theory regarding
methods for parameter estimation and spectral estimation for
missing data, but many of these have yet to be adapted and
applied to speech and audio signals.

B. AEA-AUD: Auditory Models and Anthropomorphic Pro-
cessing

Auditory models seek to capture the effective processing
of the human auditory system, or parts thereof. Such models
have many applications including studying the human auditory
system, assessment of audio quality and speech intelligibility,
or online or offline optimization of audio processing systems.

In the past decade of audio coding research, the auditory
models developed have provided simple metrics that reflect the
perceptual consequence of audio coding errors. Early measures
took only spectral masking phenomena into account while
more recent ones also account for, at least some, temporal
phenomena. The end result has been that a much higher quality
can be obtained at the same bit-rate as compared to when mean
square error based measures are used. While such metrics are
often only approximate and only account for some phenomena,
they allow for flexible schemes that can automatically adapt
to changing signals or transmission conditions, and it is hard
to argue against the sucess audio coding has seen in the past
15 years.

Auditory models may also serve as inspiration for how to
solve audio processing problems. In some cases, the objective
of audio processing is exactly to mimic the auditory system, in
others the auditory system provides a solution and, hence, one
possible solution would be one that does the same. Processing
that mimics the auditory system or its behavior is often
referred to as being anthropomorphic. In many cases, we are
still strugling to achieve performances similar to those of the
auditory system with our clever algorithms. For example, it has
proven illusive to achieve increases in speech intelligibility via
single-channel speech enhancement and separation, despite the
many advances we have witnessed in these fields within the
past few years. Yet, a danger lies in blindly mimicking the
human auditory system or adapting models of parts thereof
and integrating them into algorithms. The combination of a
statistically founded estimator with a perceptually motivated
pre-processor, for example, does not necessarily makes sense;
the optimal pre-processor is the one that conditions the signal
to the underlying assumption of the estimator.

Auditory models have the potential to lead to mathemat-
ically tractable definitions of signal processing problems, as
has been the case in audio coding. If this can be done for
other problems as well, for example for speech enhancement
and separation, then it would, arguably, be possible to achieve

both increased quality and intelligibility. An obstacle is, of
course, that in many applications, unlike in audio coding,
no reference signal is available. A promising sign is that
quite some progress has been made recently in determining
measures of speech intelligibility. However, for these models
to be useful in this context, the auditory models must be in
the form of metrics to be mathematically tractable, and this is
where the main challenge lies. Then, it will be evident whether
the optimal solution to the resulting problem turns out to be
an anthropomorphic one.

C. AEA-MIR: Content-based Processing and Music Informa-
tion Retrieval

Content-based processing is processing of or based on the
contents of signals or representations thereof, here specifically
in the context of music. Music information retrieval (MIR)
deals with the problem of extracting useful information from
music signals. As such, it requires both strong knowledge of
signal processing and the nature of music signals (ranging
from the physics of musical instruments to cultural aspects)
and is, hence, a multi-disciplinary field. The past decade has
seen this field rise from relative obscurity to prominence with
entire conferences, sessions at conferences and special issues
of journals being dedicated to the topic. Recent efforts have fo-
cused on problems such as music recommendation, polyphonic
transcription, cover song identification, genre classificiation,
mood classification, artist or composer identification, key
detection, audio to score alignment, melody extraction and
many more. Sometimes these problems are not so much of
interest in themselves. Rather, they form a basis for testing
and comparing algorithms that seek to solve some underlying
problem, like measuring music similarity.

Many of the aforementioned problems have formed the basis
of tasks (or competitions as some appear to view them) in the
Music Information Retrieval Evaluation Exchange (MIREX).
In these tasks, data sets are made available for training and al-
gorithms are submitted for evaluation, and results and rankings
are then later published by the organizers. This has contributed
greatly to the definition of relevant problems, a standardized
way of testing algorithms and reporting results. On the flip
side, it has also often meant that the most effort has been
put into designing complete systems capable of performing
well in these tasks rather than analyzing and solving the
underlying scientific problems, many of which are still not
well understood. In short, a well-functioning system does not
always equal a relevant, novel, scientific contribution to the
field.

The field is still very much in its infancy, though, when
compared to, for example, speech processing, and faces
some important challenges in the years to come. One of the
challenges of the field is that several of the problems that
researchers have tried to solve are fundamentally ill-posed.
A well-posed problem (following J. Hadamard’s definition)
is one for which a solution exsits, this solutions is known
to be unique, and it does not change much when there is a
small change in initial conditions (i.e., some kind of continuity
applies). When the labeling of training data in a classification
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problem is not unique (like, e.g., in genre classification),
the underlying problem is ill-posed in this sense. Similarly,
when the signal in a segment of a song can be described
equally well in several ways, the problem of determining the
true description is ill-posed. A related challenge is that the
problems that researchers seek to solve are not always defined
in a mathematically rigorous way, the end result being that it
is entirely unclear what problem is actually solved and what
the properties of the solution are. In other words, we do not
know why and when it works and are at a loss when it does
not. Hence, a major challenge in the field is to strive towards
more well-defined problems and more rigorous approaches to
solving these problems.

Finally, a key challenge is to move from tasks defined by
experts and researchers to tasks defined by the other people
and organizations who we would like to use the algorithms,
be it music enthusiasts, librarians, musicians or online music
stores. In many cases, it is probably not even possible to
define these tasks beforehand, and we must rather rely on
user-interaction. This will ultimately determine whether we
are successful or not.

D. AEA-AMS: Audio Analysis, Modification, and Synthesis

Audio analysis, modification and synthesis is generally
concerned with the analysis (e.g., spectral estimation, param-
eter estimation, transformation), modification based on such
analysis, and synthesis of audio signals.

Analysis aims at transforming an audio signal into a
meaningful parametrization or a transform domain, wherein
the signal can more easily be modified (for example, time-
stretched, pitch-shifted, or otherwise morphed) and then later
resynthesized. Over the past decade, significant progress has
been made in new and better methods for audio analysis. In
particular, advances have been made in parametric models
for audio signals (including models that capture a variety of
phenomena, like onsets and vibrato) and methods for finding
the parameters of these models, including several new methods
based on principles such as Bayesian estimation, subspace
methods, optimal filtering etc. Another new methodology that
has surfaced quite recently is non-negative matrix factorization
(NMF), a principle in which a non-negative data matrix is
factored into two matrices whose entries are also constrained
to being non-negative. NMF was originally proposed for
modeling images, but has proven useful for modeling audio
spectrograms, and this has led to many new methods for
solving classical audio processing problems, like source sep-
aration, music transcription, etc. Sparse approximations and
compressed sensing are also topics that have led to many new
interesting ideas and methods that may find applications in
audio analysis, modification and synthesis. In this connection,
it is interesting to note that the history of applying the ideas
behind sparse approximations to speech and audio signals
actually dates quite far back, at least to the 1980s.

Audio resynthesis from a modified parametric model is
used to correct the intonation of a musical instrument or to
change the pitch or key of a recording. Modifications of the
human voice range from removal of coarseness or adding of

vibrato to gender change of a singing voice. However, digital
music can also be synthesized from other models than those
obtained by previous analysis. Advanced synthesis methods
rely on abstract instrument models based on either the physical
properties of a real or virtual musical instrument or on circuit
diagrams of analog synthesizers or vacuum tube amplifiers.

E. AEA-MUL: Multichannel Audio Processing
Multichannel audio processing is an indispensable tool for

other audio processing tasks like spatial audio recording and
reproduction (Sec. II-F) and the analysis of acoustic environ-
ments (Sec. II-G). In the IEEE Signal Processing Society, mul-
tichannel processing is generally represented by the Technical
Committee on Sensor Array and Multichannel Processing (TC
SAM). Nevertheless, an EDICS entry on this topic under AEA
Audio and Acoustic Signal Processing is justified, because
multichannel processing for audio applications has its own
flavor.

One of the most prominent purposes for multichannel pro-
cessing is beamforming. In audio recording, microphone array
beamforming allows for a flexible handling of variable direc-
tivities by steering the maximum sensitivity in the direction of
a desired source. Conversely, also a null may be positioned at
the direction of a noise source. Advanced techniques estimate
these directions on the fly from the multichannel microphone
data. Beamforming is also applied to loudspeaker arrays. For
music reproduction so-called line arrays distribute the sound
power more or less evenly to the audience.

Another typical application of multichannel audio process-
ing is the estimation of the direction of arrival (DOA) of
the incoming sound waves of a distant source. There are two
major approaches, beamforming and time difference of arrival
(TDOA) estimation. The beamforming approach constantly
scans all possible directions and looks for directions with high
incoming signal level. The TDOA approach estimates the time
difference between the channels by correlation methods and
then converts time differences to angles of arrival. Advanced
methods determine also the source distance.

Microphone arrays may be built in different forms. Mobile
technology permits to use the microphones of various mobile
devices in the same room as a microphone array. Under these
circumstances, the array geometry is never exactly known
and may even vary during recording. Here, automatic array
calibration as another way of multichannel processing steps
in.

Multichannel audio processing is also an issue in the spatial
audio reproduction techniques described in II-F. In existing
systems, the number of independent loudspeakers ranges from
some ten to many hundred and the parallel calculation of the
loudspeaker signals from an intermediate representation needs
to be performed in real-time at the audio sampling rate. An
additional restriction is added for the spatial reproduction of
live music where the real-time requirements include also low
latency in all reproduction channels.

For different applications of multichannel audio processing,
general purpose graphical processing units (GPGPUs) are
considered as a new hardware platform. Their processing
power is abundant, but latency is a bottleneck.
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F. AEA-SAR: Spatial Audio Recording and Reproduction

The classical way of audio recording and reproduction
adopts a channel based view. The result of a recording session
is prepared for storage or transmission as a number of separate
audio tracks, one for each loudspeaker channel. Traditionally,
the number of these channels is low: two for two-channel
stereo, five plus a low frequency extension for the 5.1 format,
and a few more for some cinema formats. At the reproduction
site, each of these channels feeds one loudspeaker (possibly
two- or three-way) which has to be set up in a standardized
way. Here, the number and spatial arrangement of the loud-
speakers at the reproduction site has to be considered already
while recording. Therefore, this principle becomes unwieldy
for higher channnel numbers.

New approaches try to develop intermediate data formats
for the representation of spatial sound scenes. These formats
shall be independent of the microphone arrangement at the
recording site and of the loudspeaker arrangement at the
reproduction site. Of course, signal processing capabilities are
required to turn the original recording into this intermediate
format and again to recover the loudspeaker signals from this
format.

The nature of these intermediate format differs between the
various approaches. One direction is to expand a recorded
sound field into the spatial eigenfunctions of the acoustic wave
equation, the so-called spherical harmonics. This approach
started as an advanced microphone recording technique under
the name Ambisonics. Today, dedicated microphone arrays are
available that require multichannel real-time signal processing
for the conversion into the intermediate format and vice-versa
for the synthesis of the loudspeaker signals.

Another direction is based on a paradigm already put forth
in the MPEG-4 standardization. The shift in point of view
is here from channels to sound objects. A sound object may
be a single sound source or a group of sources. The idea is
to represent each sound object by its recorded audio data plus
some parameters like position, orientation, motion trajectories,
etc. This mixture of different data constitutes the intermediate
format. Again multichannel audio signal processing is required
to compute the loudspeaker signals from the data of each
single sound object.

Future research aims at the separation of direct sound and
reverberant components of a recording, manipulation of these
intermediate formats to reproduce virtual sound fields that are
different from the recorded ones, combination with binaural
techniques, and at the conversion of vintage channel based
recordings for multichannel spatial reproduction.

G. AEA-AAE: Analysis of Acoustic Environments

The main purpose of microphone recordings is to capture a
certain source signal: a speaker or singer, musical instruments,
animal voices, etc. . Often clean recordings are required, i.e.
the recorded signal shall contain as little environmental noise
or room reverberation as possible. A certain measure of rever-
beration is desirable only for some musical instruments or for
singing voices. In all cases the influence of the environment is

considered as a disturbance (noise) or at best as an amendment
of the source signal (reverberation).

However, noise and reverberation signals carry information
on the acoustic environment from which they emerge. This
information may be retrieved when multichannel microphone
recordings are available. They provide either geometric infor-
mation by extracting the direction of arrival of wavefronts or
they allow to exploit the redundancy between the microphone
channels for e.g. source separation.

The interest in the analysis of acoustic environments is
driven by different applications. In some cases, e.g. for spatial
reproduction, the location of a sound source or its motion
trajectory is recorded as additional data for later reproduction.
When recording speech signals, knowing the location of a
specific noise source can help to surpress its contribution to
the source signal.

Not only information on sound sources within an enclosure
but also on the acoustic environment as such is of interest.
This information may consist of global parameters like the
reverberation time or the propagation speed of sound waves.
Also more detailed information can be retrieved like position,
orientation, and the properties of acoustic reflectors. Then the
first few image sources in a mirror image source model can
be identified immediately from sound recordings.

Future directions include the refinement of reflector lo-
calization towards a full geometric model of the enclosure.
Here the analysis of acoustic environments meets the inten-
tion of acoustic imaging methods, e.g. ultrasound imaging.
However the challenge is to work with wavelengths in the
audio range, with arbritrary excitation signals like speech,
and a low number of microphone channels. In the extreme,
forensic applications call for the identification of certain types
of acoustic environments from a single-channel recording.

III. CONCLUSION

The EDICS for Audio and Acoustic Signal Processing in-
clude also entries for Feedback and Echo Cancellation (AEA-
FEC), Source Separation and Enhancement (AEA-SEP), Au-
dio Coding (AEA-COD), and Audio Processing via Sparse
Representations (AEA-SPARSE). These have not been de-
scribed above since they partly overlap with Machine Learning
and Statistical Signal Processing (MLSAS), Speech and Lan-
guage Processing (SPE), and Sensor Array and Multichannel
Signal Processing (SAM).

As we have pointed out, there are many challenges ahead
of us and many interesting new ideas as well. We hope that
the new EDICS system will be a beneficial tool to share these
ideas quickly with the signal processing community.
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