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Bayesian Estimation with Distance Bounds
Dave Zachariah, Isaac Skog, Magnus Jansson, and Peter Händel

Abstract—We consider the problem of estimating a random
state vector when there is information about the maximum
distances between its subvectors. The estimation problem is
posed in a Bayesian framework in which the minimum mean
square error (MMSE) estimate of the state is given by the
conditional mean. Since finding the conditional mean requires
multidimensional integration, an approximate MMSE estimator
is proposed. The performance of the proposed estimator is
evaluated in a positioning problem. Finally, the application
of the estimator in inequality constrained recursive filtering
is illustrated by applying the estimator to a dead-reckoning
problem. The MSE of the estimator is compared with two related
posterior Cramér-Rao bounds.

I. I NTRODUCTION

Consider the problem of estimating a vectorx ∈ R
d with a

known prior distribution. In the standard Bayesian setup one
tries to estimatex from a correlated observationy. In this
letter we deviate from the standard problem and instead seek
the estimate ofx relying on the side information‖xi−xj‖ ≤
γ, wherexi andxj are subvectors ofx, andγ is given.

This setup has a range of applications in positioning and lo-
calization. As an example, consider the problem of estimating
jointly the positionsp1 ∈ R

3 andp2 ∈ R
3 and the velocities

v1 ∈ R
3 and v2 ∈ R

3 of two points on a human body. In
that case, the state isx = [p⊤

1 p⊤
2 v⊤

1 v⊤
2 ]

⊤, and since
there is an upper limitγ on how far apart body parts can be,
we have the side information that‖p1 − p2‖ ≤ γ. Similarly,
consider the problem of estimating the positions ofN nodes,
x = [x⊤

1 . . .x⊤
N ]⊤, when bounds,‖xi − xj‖ ≤ γij , on the

distance between pairs of nodes are given. Further applications
are possible for sensor fusion of systems subject to non-rigid
constraints.

In the literature, there are two main approaches to tackle
the problem of estimation with nonlinear inequality constraints
[1]. The first approach uses the side information by passing
x through a nonlinear function, such that the output always
fulfills the constraint [2], [3]. The second approach treatsthe
problem probabilistically, and the side information is used to
form a conditional probability density function (pdf) ofx by
truncating and renormalizing the prior pdf; the support of the
conditional pdf is a region where the constraint is inactive[4],
[5]. However, when using distance bounds as side information,
the support of the conditional pdf is infinite. In scenarios where
the dispersion of the pdf increases without bound, this may
lead to numerical problems when computing the moments of
the pdf using e.g., the Monte Carlo methods suggested in [5].

In this letter, we circumvent the problems associated with
the infinite support pdf, by reformulating the problem via a
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linear transformation. This also reduces the dimensionality
of the original problem by a factor two. Based on the new
problem formulation an efficient method for computing an
approximate minimum mean square error (MMSE) estimator
of x given bounds on the distances between its subvectors is
presented. The method is validated using simulations.

Notation:A⊕B denotes the direct sum between matricesA

andB. A1/2 is the lower-triangular Cholesky factorization of
a positive definite matrixA. tr{·} denotes the trace operator,
[A]i is the ith column ofA, andA−⊤ denotes the transpose
of the inverse matrixA−1, i.e.,A−⊤ = (A−1)⊤. Further,In,
1n, and0n denote the identity matrix, a vector of ones and
zeros, respectively.

II. PROBLEM FORMULATION

Let the state be defined asx , [x⊤
1 x⊤

2 x⊤
a ]

⊤ ∈ R
d,

wherex1,x2 ∈ R
n are the two subvectors related to the side

information,xa ∈ R
m is a subvector holding the auxiliary

states, and the state dimensiond = 2n+m. Further, we assume
that the prior pdfp(x) of the state is Gaussian with known
meanmx and covarianceCx, i.e.,x ∼ N (mx,Cx).

Now, if we in addition tomx andCx are provided with the
side informationc that tells us about the maximum distance
between the two subvectors, i.e., we have the constraint that
‖Lx‖ ≤ γ, whereL ,

[
In −In 0n×m

]
. Then, we would

like to compute the MMSE estimate ofx given c. The
estimator and its error covariance matrix are given by the
meanmx|c and covariance matrixCx|c of the conditional pdf
p(x|c) [6]. Since the computation of these moments requires
multidimensional numerical integration, our aim is to find
a computationally efficient way to calculatemx|c and Cx|c

approximately. The resulting approximations will be denoted
as x̂|c andCx̂.

III. PROPOSED SOLUTION

The proposed method to calculatemx|c andCx|c consists
two steps. In the first step, a state transformation is performed,
that maps the infinite integration area into a finite area and
reduces the dimension of the integrals. Thus the transforma-
tion simplifies the calculation of the conditional mean and
covariance. In the second step, the integrals are approximated
using a deterministic sampling approach.

A. Variable transformation

Define a new state vector, given by the invertible linear
transformationz , Tx ∈ R

d, such that it can be divided
into the subvectorsz1 = x1 − x2 ∈ R

n and z2 = [(x1 +
x2)

⊤ x⊤
a ]

⊤ ∈ R
n+m. Hence, it can be verified that

T ,

[
In −In
In In

]
⊕ Im, T−1 =

1

2

([
In In
−In In

]
⊕ 2Im

)
,
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andz ∼ N (mz ,Cz). Heremz = Tmx andCz = TCxT
⊤.

In terms of the new state vector, the constraintc can be
expressed as‖LT−1z‖ = ‖z1‖ ≤ γ, and the constraint thus
operates only on the subvectorz1. As will been shown next,
this important property simplifies the calculations ofmx|c and
Cx|c. Since the means and covariances of the new and original
state are related viamx = T−1mz andCx = T−1CzT

−⊤,
we can recast the original problem of calculatingmx|c and
Cx|c, into computingmz|c andCz|c.

To compute the moments, note thatp(z2|z1) is Gaussian
with meanmz2|z1 and covarianceCz2|z1 given by the affine
mapping

mz2|z1 = uz2 +Az1

Cz2|z1 = Cz2 −AC⊤
z2z1 ,

(1)

whereA , Cz2z1C
−1
z1 anduz2 , mz2 −Amz1 .

Next, sincez1 is given the norm‖z1‖ provides no addi-
tional information andp(z2|z1, ‖z1‖) is identical top(z2|z1).
Similarly, givenz1 a bound on the norm‖z1‖ ≤ γ yields no
additional information. Hencep(z2|z1, c) = p(z2|z1) for all
valid z1, i.e., ∀z1 ∈ {z1 ∈ R

n : ‖z1‖ ≤ γ}. The conditional
meanmz|c and covarianceCz|c can thus be calculated as
follows.

Let the conditional mean be partitioned asmz|c =
[m⊤

z1|c
m⊤

z2|c
]⊤. The conditional mean ofz1 is given by

mz1|c =

∫

z1

z1p(z1|c)dz1, (2)

and the conditional mean ofz2 by

mz2|c =

∫

z1

[∫

z2

z2p(z2|z1)dz2

]
p(z1|c)dz1

=

∫

z1

(uz2 +Az1) p(z1|c)dz1

= uz2 +Amz1|c.

(3)

The conditional covariance matrix can be written as

Cz|c = Pz|c −mz|cm
⊤
z|c

=

[
Pz1|c Pz1z2|c

P⊤
z1z2|c

Pz2|c

]
−mz|cm

⊤
z|c,

(4)

where

Pz1|c =

∫

z1

z1z
⊤
1 p(z1|c)dz1, (5)

Pz1z2|c =

∫

z1

z1

[∫

z2

z⊤2 p(z2|z1)dz2

]
p(z1|c)dz1

= mz1|cu
⊤
z2 +Pz1|cA

⊤,

(6)

and

Pz2|c =

∫

z1

[∫

z2

z2z
⊤
2 p(z2|z1)dz2

]
p(z1|c)dz1

=

∫

z1

(
Cz2|z1 +mz2|z1m

⊤
z2|z1

)
p(z1|c)dz1

= Cz2 −AC⊤
z2z1 + uz2u

⊤
z2

+

∫

z1

(
uz2z

⊤
1 A

⊤ +Az1u
⊤
z2 +Az1z

⊤
1 A

⊤
)
p(z1|c)dz1

= Cz2 −AC⊤
z2z1 + uz2u

⊤
z2

+ uz2m
⊤
z1|c

A⊤ +Amz1|cu
⊤
z2 +APz1|cA

⊤.

(7)

Hence, we need only solve the integrals (2) and (5) for the
first and second order moments ofp(z1|c). The remaining
parts ofmz|c and Cz|c can be found by a series of affine
transformations. An important computational advantage ofthe
reparameterization,z = Tx, is that the support ofp(z1|c)
is finite unlike the support ofp(x|c). Further, a reduction of
the dimensionality by a factor two compared to the original
problem is achieved. Whenn = 1, the integrals (2) and (5)
are given by the mean and variance of a truncated Gaussian
distribution, which both have closed-form expressions [7].

B. Approximating the conditional mean and covariance

When n > 1, no apparent closed-form expressions of
integrals (2) and (5) exist. To avoid solving the integrals
through computationally complex numerical integrations,we
will approximate them by the convex combinations

mz1|c ≃
2n∑

i=0

wiz
(i)
1 and Pz1|c ≃

2n∑

i=0

wiz
(i)
1 (z

(i)
1 )⊤, (8)

where theith sample pointz(i)1 and weightwi, described
next, are chosen so that the following properties hold true.
When a fractionα of the probability mass ofp(z1) is within
the boundary of the constraint, the approximated moments
are unchanged. Otherwise, the sample points adapt to the
constraint, which ensures that the approximated mean falls
within its convex boundary and that the dispersion is reduced
accordingly. Thus, the design parameterα affects when the
side information becomes effective.

The proposed deterministic sampling technique is as fol-
lows. First, as in the sigma-point transformation [8],2n + 1
sample points fromp(z1) are generated deterministically by

s(i) =





mz1 i = 0

mz1 + η
1/2
α [C

1/2
z1 ]i i = 1, . . . , n

mz1 − η
1/2
α [C

1/2
z1 ]i−n i = n+ 1, . . . , 2n

. (9)

Here ηα is the value that fulfillsPr{η ≤ ηα} = α, where
η = (z1 − mz1)

⊤C−1
z1 (z1 − mz1). That is,ηα is set by the

confidence ellipse at levelα and can be calculated from the
inverse of the cumulative distribution function (cdf) ofη ∼ χ2

n.
Then, a new set of sample points{z(i)1 }2ni=0 are generated

by orthogonally projecting the sample pointss(i) that violate
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the constraintc onto its spherical boundary. That is

z
(i)
1 =

{
s(i) if ‖s(i)‖ ≤ γ
γ

‖si‖s
(i) otherwise

, i = 0, . . . , 2n. (10)

The constraint-violating points are, in a fashion similar to that
in [3], resampled at the boundary. The weights in (8) are set
as

wi =

{
1− n

ηα

i = 0
1

2ηα

i = 1, . . . , 2n
. (11)

This choice yields the properties for (8) described earlier.1

Once the moments are computed,mx|c = T−1mz|c and
Cx|c = T−1Cz|cT

−⊤ are obtained using the affine trans-
formations (3), (6), and (7) along with (4). This provides the
estimatorx̂|c and approximated error covariance matrixCx̂.

C. Illustration of how the estimator works

We illustrate the sigma-point approximation and the result-
ing estimator using the following example. Two objects, with a
joint spatial Gaussian distribution, are located inR

2. The mean
positions of the objects aremx1

= 02 andmx2
= 0.8 · 12

[m], and the joint state covariance matrixCx = Cx1
⊕Cx2

,
where

Cx1
=

[
0.1 0.05
0.05 0.1

]
and Cx2

=

[
0.2 0
0 0.2

]
.

We then provide the side informationc with γ = 1 [m].
Settingα = 0.95, the approximated conditional meansmx1|c

and mx2|c, along with confidence ellipses, are shown in
Fig. 1. Fig. 2 illustrates the deterministic sampling procedure
in subsystemz1. The sample points are generated according
to the confidence ellipse and projected orthogonally when the
constraint is violated. Observe that the ellipses shrink when
the side informationc becomes available.

IV. EXPERIMENTAL RESULTS

Using Monte Carlo simulations, the estimatorx̂|c is evalu-
ated numerically in a positioning and a tracking scenario inR

2.
Throughout the experiments, the side informationc is given by
γ = 1 [m] and the estimator design parameterα = 0.95. As
a performance measure, the root mean square error (RMSE)
of the state estimates is used.

A. Positioning scenario

In this scenario, the positioning of the two systemsx1 and
x2, is considered. In the Monte Carlo simulation, the positions
of the two systems were generated by drawing two candidate
positions from two independent Gaussian distributions, and
then retaining a realization that fulfilled the constraint with γ.
The parameters of the pdf weremx1

= β12, Cx1
= σ2

1I2,
andmx2

= 02 andCx2
= I2. The empirical RMSE of the

estimatorx̂|c was calculated using Monte Carlo simulations
with 104 runs. Figs. 3 and 4 show the RMSE of the estimator

1An α close to one yields a confidence ellipse that captures a larger
probability mass and thus adapts smoother to the constraint. However, setting
α too large results in sample points with too low weights to approximate the
truncated pdf.
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Fig. 1. Illustration of how the side information affects themean positions.
Shown are the means and approximated conditional means, together with
the loci corresponding to the 95% confidence ellipses of Gaussian pdfs with
covariance matricesCx1

, Cx2
, Cx1|c, andCx2|c, respectively.
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Fig. 2. Illustration of the sampling technique used to approximatemz1|c and
Cz1|c. Sample points beforesi (circles) and afterzi

1
(asterisk) the projection,

the boundary of the constraintc with γ = 1 (dashed circle), and the confidence
ellipses ofCz1

(dash-dotted) andCz1|c (solid) are also shown.

for different values ofσ1 and β, respectively. As expected,
the accuracy improvement of̂x|c over the prior meanmx

increases as the certainty of the position of one object grows,
or when its prior mean is placed further away. In these casesc

provides more information. The figures also show
√

tr{Cx̂},
which indicate that the second-order statistics are slightly
underestimated.

B. Tracking scenario

Let us now consider the scenario where we want to fuse
the position information from two dead-reckoning systems
mounted on a non-rigid body, but where the body has a
known finite length. This could, for example, be two foot-
mounted inertial navigation systems (one system on each
foot) used to track the position of a person while walk-
ing inside a building [9]. The joint position statex(k) =
[(x1(k))

⊤ (x2(k))
⊤]⊤ ∈ R

4 of the two dead-reckoning
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Fig. 3. Positioning scenario. RMSE versusσ1 for β = 1 and side information
c with γ = 1.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

 

 

PSfrag replacements

mx

x̂|c√
tr{Cx̂}

R
M

S
E

[m
]

β [m]

Fig. 4. Positioning scenario. RMSE versusβ for σ1 = 1 and side information
c with γ = 1.

systems is updated every second via the recursionx(k) =
x(k − 1) + u(k). The displacementsu(k) are measured
in noise, ũ(k) ∼ N (u(k),Q), whereQ denotes the error
covariance of the measured displacements. Due to the integra-
tive nature of the dead-reckoning recursion, the uncertainty
of the statex(k) will grow without bound; the covariance
of the state uncertainty,P(k), is given by the recursion
P(k) = P(k − 1) + Q, starting from the covarianceP(0)
of the initial position state.

To reduce the rate at which the position uncertainties grow,
we can use the side information that the two systems are
mounted on a non-rigid body of known finite length, i.e.,
we have the side information that‖x1(k)− x2(k)‖ ≤ γ, ∀k.
Given the sequenceu(k) = {ũ(i)}ki=0 of measured position
changes and the general side informationI, the conditional
pdf p(x(k)|u(k), I) can be calculated recursively as

p(x(k)|u(k), I) =

∫
p (x(k)|x(k − 1), ũ(k))

× p (x(k − 1)|u(k − 1), I) dx(k − 1),

starting from the pdfp(x0|I) of the initial position state. The
transition pdfp(x(k)|x(k − 1), ũ(k)) equalsN (x(k − 1) +
ũ(k),Q). The MMSE estimate ofx(k) is given by the mean
of p(x(k)|u(k), I), which is intractable in general.

WhenI = c, we use the conditional moments at each time
instantk and approximatep(x(k)|u(k), c) by a Gaussian pdf,
N (mx|c(k),Cx|c(k)). Then the recursion results in Gaussians
with computable means that form point estimatesx̂|c(k). We
compare this to the case when the side information is the actual
distances,I = {y(i)}ki=0, wherey(k) = ‖x1(k)− x2(k)‖.

The posterior Cramér-Rao bound (PCRB) on the RMSE
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Fig. 5. Tracking scenario. RMSE over time for two dead-reckoning systems
when the side informationc is used. The PCRBs for the case with no side
information and the case with perfect distance informationare also shown.

for I = ∅ is
√

tr{P(k)} and for I = {y(i)}ki=0, it is√
tr{J−1(k)}, whereJ(k) is the Fisher information matrix

of the state (see [10] for details). The performance of the
estimator is compared with the PCRBs in Fig. 5, whereQ =
10−4 · I4 [m2]. Initially, the RMSE follows the upper PCRB,
but as the errors of the dead-reckoning systems accumulate,the
distance bound becomes more informative and the estimator
tends towards the lower PCRB, which has a lower growth rate
than the upper PCRB; proof emitted due to space limitations.

Reproducible research:The proof of convergence to the
lower PCRB and the Matlab code used in all the simulations
is available at www.ee.kth.se/∼davez/rr-bayes.

V. CONCLUSION AND FURTHER WORK

We have presented an approximate MMSE estimator that
uses a given maximum distance between subvectors as side
information. By reducing the dimensionality of the problem, a
computationally efficient formulation was given. The estimator
has a range of potential applications in positioning and local-
ization. Our further work includes extending the frameworkto
larger systems with several distance bounds, and applying it
to a multi-user indoor navigation system.
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