arXiv:1210.3516v1 [math.ST] 12 Oct 2012

Bayesian Estimation with Distance Bounds

Dave Zachariah, Isaac Skog, Magnus Jansson, and PeteeHand

Abstract—We consider the problem of estimating a random linear transformation. This also reduces the dimensignali
state vector when there is information about the maximum of the original problem by a factor two. Based on the new
distances between its subvectors. The estimation problens i ropiem formulation an efficient method for computing an
posed in a Bayesian framework in which the minimum mean imat . MMSE timat
square error (MMSE) estimate of the state is given by the appro>_<|mae minimum mea_n square error ( ) ) estima Or
conditional mean. Since finding the conditional mean requies Of x given bounds on the distances between its subvectors is
multidimensional integration, an approximate MMSE estimator ~ presented. The method is validated using simulations.
is proposed. The performance of the proposed estimator is  Notation: A@B denotes the direct sum between matrides
evaluated in a positioning problem. Finally, the applicaton 50qB. A1/2 is the lower-triangular Cholesky factorization of

of the estimator in inequality constrained recursive filtering . - .
is illustrated by applying the estimator to a dead-reckonirg & positive definite matrixA. tr{-} denotes the trace operator,

problem. The MSE of the estimator is compared with two relatel  [Ali i theith column of A, and A~ " denotes the transpose
posterior Cramér-Rao bounds. of the inverse matrixA—!, i.e.,, AT = (A=1)T. Further,L,,
1,, and0,, denote the identity matrix, a vector of ones and
zeros, respectively.
I. INTRODUCTION
Consider the problem of estimating a vectoe R? with a Il. PROBLEM FORMULATION
known prior distribution. In the standard Bayesian setup on i L 1 T T 7T d
tries topestimatesc from a correlated observz;tioyl. In thiz WhLeerte;hleXthaeteRSea;jee{wee (:\N?)Ssub[\)/:ctoi? reIZ{le]d toe tfe ’side
letter we deviate from the standard problem and instead S‘?ﬁf&rmati’cm,xa € R™ is a subvector holding the auxiliary
the estimate ok relying on the side informatiofix; —x; || < states, and the state dimensibe: 2n-+m. Further, we assume
7, wherex; andx; are subvectors of, andv is given. that the prior pdfp(x) of the state is Gaussian with known
This setup has a range of applications in positioning and Igreanm, and covariance,, i.e.,x ~ A (m,, C,).
calization. As an example, consider the problem of estimgati  Now, if we in addition tom, andC, are provided with the
jointly the positionsp, € R® andp, € R? and the velocities sjge informationc that tells us about the maximum distance
vi € R? andv, € R? of two points on a human body. Inpetween the two subvectors, i.e., we have the constraint tha
that case, the state = [p/ p; v v;]', andsince |Lx| <, whereL £ I, —I, O,xm]. Then, we would
there is an upper limity on how far apart body parts can bejike to compute the MMSE estimate of given c. The
we have the side information th@p, — p»|| < . Similarly, estimator and its error covariance matrix are given by the
consider the problem of estimating the positions\ohodes, meanm,|. and covariance matri€,. of the conditional pdf
x = [x] ...x}]", when bounds|/x; — x;|| < i, on the ,x|¢) [B]. Since the computation of these moments requires
distance between pairs of nodes are given. Further applisat myitidimensional numerical integration, our aim is to find
are possible for sensor fusion of systems subject to nad-rigy computationally efficient way to calculate,. and C,.

constraints. _ approximately. The resulting approximations will be deabt
In the literature, there are two main approaches to taclﬁg,z'c and C;.

the problem of estimation with nonlinear inequality coasits
[1]. The first approach uses the side information by passing I1l. PROPOSED SOLUTION
x through a nonlinear function, such that the output always
fulfills the constraint[[2], [[8]. The second approach tretis
problem probabilistically, and the side information is dide
form a conditional probability density function (pdf) af by

The proposed method to calculate, . and C, . consists
two steps. In the first step, a state transformation is peréol,
that maps the infinite integration area into a finite area and
. - ) reduces the dimension of the integrals. Thus the transforma
truncating and renormalizing the prior pdf; the supporthas t tion simplifies the calculation of the conditional mean and

conditional pdf is a region where the constraint is inacfije covariance. In the second step, the integrals are appreaima

[5]. However, when using distance bounds as side informatiqJSing a deterministic sampling,approach.

the support of the conditional pdf is infinite. In scenaridsane

the dispersion of the pdf increases without bound, this MY \sariable transformation

lead to numerical problems when computing the moments of "~ ) ] . )

the pdf using e.g., the Monte Carlo methods suggested in [5]'Def|ne a new Astate vector, given by t.he mvemblglllnear
In this letter, we circumvent the problems associated wiffAnsformationz £ Tx € R?, such that it can be divided

the infinite support pdf, by reformulating the problem via 0 the subvectors; = x; —x; € R" andz; = [(x1 +

x2)!  x/]T € R**™. Hence, it can be verified that
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andz ~ A(m_,C,). Herem, = Tm, andC, = TC,T".
In terms of the new state vector, the constraintan be
expressed a§LT ™~

this important property simplifies the calculationsmf,|. and

C.|.. Since the means and covariances of the new and original

state are related vim, = T 'm., andC,, = T 'C, T T,
we can recast the original problem of calculating, . and
C.|, into computingm. . andC,|..

To compute the moments, note that.|z;) is Gaussian
with meanm_, ., and covarianceC_, ., given by the affine
mapping

m =u, + Az

=C,, - AC]

zZ9z1)

zz|z1

1
C..ro, @)

whereA £ C.,.,C;! andu., £ m., — Am.,.

Next, sincez; is giventhe norm|z;|| provides no addi-
tional information ancb(z2|z1, ||z1]|) is identical top(z2|z1).
Similarly, givenz; a bound on the norriz,|| < ~ yields no
additional information. Hence(zz|z1,c) = p(z2|z;) for all
valid z,, i.e.,Vz, € {z; € R" : ||z1|| < «}. The conditional

'z|| = ||z1| < ~, and the constraint thus P, =
operates only on the subvectay. As will been shown next,

and
[/ 2274 p( z2|z1)dz2} p(z1]c)dzy

/ Z2\Z1 +m22|21 ;‘Zl)p(ZﬂC)dzl
—-c, -

AC] +uz,u ;

Z2%1

+/ w.,z{ AT + Aziu, + Azz{ A7) p(z1|c)dz,

= Cz2

+ uZ2m

AC] . +u.ul

2221
AT +Am, u), + AP, AT

z1le

()

Hence, we need only solve the integrdls (2) dnd (5) for the
first and second order moments pfz;|c). The remaining
parts ofm_|. and C,|. can be found by a series of affine
transformations. An important computational advantagthef
reparameterizationz = Tx, is that the support op(z1|c)

is finite unlike the support op(x|c). Further, a reduction of

the dimensionality by a factor two compared to the original
problem is achieved. When = 1, the integrals[(2) and{5)
are given by the mean and variance of a truncated Gaussian
distribution, which both have closed-form expressiaons [7]

meanm_ . and covarianceC. . can thus be calculated as

follows.

Let the conditional mean be partitoned am.. =
m',  m ]T. The conditional mean of; is given by

z1|e z2|c

my e = / le(Z1|C)dZ1, (2)
z1
and the conditional mean af by
o= [ | [ septwln )iz sl
Zq zo
3
= [ e+ Az @)
z1
=u;, +Am, ..
The conditional covariance matrix can be written as
c:z|c = Pz\c - mz|cm;c
P P 4
z122|c zalc
where
P..= / 2121 p(z1|c)dz,, (5)
z
| =/ Z1 [/ ZQTP(Z2|Zl)dZ2] p(z1]c)dz
Zz zo (6)

_ T T
— mz1|cu22 + Pz1|cA 5

B. Approximating the conditional mean and covariance

When n > 1, no apparent closed-form expressions of
integrals [[2) and[{5) exist. To avoid solving the integrals
through computationally complex numerical integrations,
will approximate them by the convex combinations

2n
mzl‘c ~ Zwizg )
=0
(4)

where theith sample pointz;’ and weightw;, described
next, are chosen so that the following properties hold true.
When a fractionn of the probability mass op(z; ) is within
the boundary of the constraint, the approximated moments
are unchanged. Otherwise, the sample points adapt to the
constraint, which ensures that the approximated mean falls
within its convex boundary and that the dispersion is reduce
accordingly. Thus, the design parameterffects when the
side information becomes effective.

The proposed deterministic sampling technique is as fol-
lows. First, as in the sigma-point transformation [8f + 1
sample points fronp(z;) are generated deterministically by

and PZI‘C_ZwZ =T, (@®)

=0

m;, 1=0
s =<{m,, é/2[cl/2] i=1....n ©)
my, — 77}1/2[0;{2]1'_” i=n—+1,...,2n

Here n, is the value that fulfillsPr{n < n,} = a, where
n = (z1 —m.,) C;'(z; — m;,). That is,n, is set by the
confidence ellipse at level and can be calculated from the
inverse of the cumulative distribution funct|0n (cdfypfe x2.
Then, a new set of sample pom{s1 }2" are generated
by orthogonally projecting the sample poiré that violate



the constraint onto its spherical boundary. That is

D L
P s otherwise T U sl
The constraint-violating points are, in a fashion simitathat
in [3], resampled at the boundary. The weights[ih (8) are set ir !
as = ,'
1-2 =0 = 1
w; = 1 N Z . (11) - 08 !
ST 1=1,...,2n
Na

This choice yields the properties fdr] (8) described edllier
Once the moments are computeh, . = T_lmz‘c and

mg.,
My, |d |

C,. = T7'C,.T~T are obtained using the affine trans- 05 m,, ]
formations [(B), [(B), and_{7) along withl(4). This provides th 21 s o o I 15 5
estimatorx|. and approximated error covariance mat@y.  [m]

Fig. 1. llustration of how the side information affects threean positions.

C. lllustration of how the estimator works Shown are the means and approximated conditional meansthesgwith
) ] ) . . the loci corresponding to the 95% confidence ellipses of Sanspdfs with
We illustrate the sigma-point approximation and the resulfovariance matrice€s,, Cay,, Cy, |c, andC,, .., respectively.

ing estimator using the following example. Two objects hvat
joint spatial Gaussian distribution, are located®ih The mean
positions of the objects arm,, = 02 andm,, = 0.8 -1,

[m], and the joint state covariance mati®, = C,, ® C,,, s ~.
7
where o5l i \\\
~[01 005 o2 0 PR N .
Ca = {0.05 0.1} and C, = { 0 0.2] ' of ; ; SR
/ I
We then provide the side information with v = 1 [m]. E o5 ,/ Y \dD J
. . .y — =001 7
Settinga = 0.95, the .approanated con_dmonal means, . 5 ; é‘ ;L
and m,,., along with confidence ellipses, are shown in Y E RE I o 1
Fig.[. Fig.[2 illustrates the deterministic sampling prhoe ' !
in subsystenz;. The sample points are generated according —15) ‘,\ ;o
to the confidence ellipse and projected orthogonally when th N PR O m
constraint is violated. Observe that the ellipses shrinlerwh -2f R I S L M)y
the side informatiorr becomes available. 25 -2 -15 -1 A—o[.sl 0o 05 1
x |m
IV. EXPERIMENTAL RESULTS Fig. 2. lllustration of the sampling technique used to agjmatem., |. and

. . - . P C.,|c- Sample points before’ (circles) and afte? (asterisk) the projection,
Using qute C_ar'o S"T‘P'aF'O”S' the esumatqg is evalu- thelboundary of the constraintwith v = 1 (dashed circle), and the confidence
ated numerically in a positioning and a tracking scenari®in ellipses ofC-, (dash-dotted) an@. |, (solid) are also shown.

Throughout the experiments, the side informatias given by
~v =1 [m] and the estimator design parameter= 0.95. As
a performance measure, the root mean square error (RM$&) different values ofo; and 3, respectively. As expected,

of the state estimates is used. the accuracy improvement of|. over the prior meanm,
increases as the certainty of the position of one object grow
A. Positioning scenario or when its prior mean is placed further away. In these cases

. . . provides more information. The figures also showr{C;},

In this scenario, the positioning of the tWO. systemsan_d_ which indicate that the second-order statistics are dlight
X2, IS considered. In the Monte Carlo simulation, the posgion .

: . underestimated.

of the two systems were generated by drawing two candidate
positions from two independent Gaussian distributiong] an ) )
then retaining a realization that fulfilled the constraiithwy. B- Tracking scenario
The parameters of the pdf wera,, = 812, C,, = oil,, Let us now consider the scenario where we want to fuse
andm,, = 0, and C,, = I,. The empirical RMSE of the the position information from two dead-reckoning systems
estimatorx|. was calculated using Monte Carlo simulationghounted on a non-rigid body, but where the body has a
with 10* runs. Figs[B andl4 show the RMSE of the estimatdnown finite length. This could, for example, be two foot-
mounted inertial navigation systems (one system on each

1An « close to one yields a confidence ellipse that captures arlargﬁ)ot) used to track the position of a person while walk-
probability mass and thus adapts smoother to the constiddwtever, setting

« too large results in sample points with too low weights toragjmate the ing inside a building [9] The joint position Statﬁ(k) =
truncated pdf. [(x1(k))T (x2(k))T]T € R* of the two dead-reckoning
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Fig. 3. Positioning scenario. RMSE versusfor 3 = 1 and side information
c with v = 1.

16

Fig. 4. Positioning scenario. RMSE versti$or o1 = 1 and side information
c with v = 1.

systems is updated every second via the recursity =
x(k — 1) + u(k). The displacementsi(k) are measured
in noise, u(k) ~ N(u(k),Q), where Q denotes the error

E s} 7
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Fig. 5. Tracking scenario. RMSE over time for two dead-redkg systems

when the side informatior is used. The PCRBs for the case with no side

information and the case with perfect distance informatiom also shown.

i
500 2500

for I = @ is Jtr{P(k)} and forI = {y(i)}r,, it is
Vtr{J-1(k)}, whereJ(k) is the Fisher information matrix
of the state (see [10] for details). The performance of the
estimator is compared with the PCRBs in Hi§). 5, wh&re-
10~* - I; [m?]. Initially, the RMSE follows the upper PCRB,
but as the errors of the dead-reckoning systems accumthiate,
distance bound becomes more informative and the estimator
tends towards the lower PCRB, which has a lower growth rate
than the upper PCRB; proof emitted due to space limitations.

Reproducible researchThe proof of convergence to the
lower PCRB and the Matlab code used in all the simulations
is available at www.ee.kth.sedavez/rr-bayes.

V. CONCLUSION AND FURTHER WORK

We have presented an approximate MMSE estimator that
uses a given maximum distance between subvectors as side
information. By reducing the dimensionality of the probleam

covariance of the measured displacements. Due to the &tegiomputationally efficient formulation was given. The esttor
tive nature of the dead-reckoning recursion, the unceyaimas a range of potential applications in positioning andlioc
of the statex(k) will grow without bound; the covariancezation. Our further work includes extending the framewtark

of the state uncertaintyP(k), is given by the recursion
P(k) = P(k — 1) + Q, starting from the covarianc®(0)
of the initial position state.

larger systems with several distance bounds, and applying i
to a multi-user indoor navigation system.

To reduce the rate at which the position uncertainties grow,
we can use the side information that the two systems angy
mounted on a non-rigid body of known finite length, i.e.,
we have the side information thék; (k) — x2(k)|| < v, Vk.
Given the sequenca(k) = {u(i)}*_, of measured position
changes and the general side informatiQrthe conditional
pdf p(x(k)[u(k), I) can be calculated recursively as

p(x(k)[u(k),I) :/p(X(k)IX(k —1),u(k))
x p(x(k — Da(k — 1), I) dx(k — 1),

starting from the pdp(xq|I) of the initial position state. The

transition pdfp(x(k)|x(k — 1),u(k)) equalsN (x(k — 1) + 6]

u(k), Q). The MMSE estimate ok(k) is given by the mean

of p(x(k)[u(k), I), which is intractable in general. [7]
When! = ¢, we use the conditional moments at each tim%]

instantk and approximate(x(k)[u(k), ¢) by a Gaussian pdf,

N (my.(k), Cy (k). Then the recursion results in Gaussiango]

with computable means that form point estimates k). We

(2]

(31

(4]

(5]

compare this to the case when the side information is thehcty o,

distances] = {y(i)}*_,, wherey (k) = ||x1 (k) — x2(k)]|.
The posterior Cramér-Rao bound (PCRB) on the RMSE
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