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A Novel Windowing Technigue for Efficient
Computation of MFCC for Speaker Recognition
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~ Abstract—In this paper, we propose a novel family of window- that our proposed technique integrates both slope and phase
ing technique to compute Mel Frequency Cepstral Coefficient jnformation with magnitude spectrum. Therefore, it can be
(MFCC) for automatic speaker recognition from speech. The ,qihesized that the speech feature extraction from these

proposed method is based on fundamental property of discret o . - S o
time Fourier transform (DTFT) related to differentiation i n Modified Fourier coefficients will give better recognitioarp

frequency domain. Classical windowing scheme such as Hamng ~ formance. We have evaluated the performance in multiple
window is modified to obtain derivatives of discrete time Fouier = databases for speaker verification (SV) task, and consisten
transform coefficients. It has been mathematically shown tat the performance improvement is achieved over Hamming window
slope and phase of power spectrum are inherently incorporad based baseline system.

in newly computed cepstrum. Speaker recognition systems bad . .
on our proposed family of window functions are shown to  1he restof the paper is organized as follows. In Sedibn I,
attain substantial and consistent performance improvemenover W€ deSfC_”be the proposed windowing SCh_eme and its features.
baseline single tapered Hamming window as well as recently In addition to that, the effect of newly introduced window
proposed multitaper windowing technique. in power spectrum computation is mathematically analyzed.

Index Terms—Differentiation in frequency, Power Spec- Experimental results are shown in Sectiod IlI. Finally, the
trum Estimation, Speaker Recognition, Tapered Window, Mel  paper is concluded in SectionlIV.
frequency cepstral coefficients (MFCC).

Il. PROPOSEDWINDOWING METHOD
. INTRODUCTION A. Design of proposed window function

El frequency cepstum coefficient (MFCC) extraction | et 4(n) be a windowed speech frame of lengthand its
schemes use discrete Fourier transform (DFT) for cabTFT is given by, X (e/%). We know from differentiation in

culating short-term power spectrum of speech signal. Dufequency property [6] that DTFT ofz(n) can be written as,
ing this process, Hamming or Hanning window is applied

to raw speech frames in order to reduce spectral leakage dX (e)*) (1)
effect. These windows have reasonable sidelobe and main- T

lobe characteristics which are required for DFT computatio As DFT coefficientsX (k) are samples of DTFT ab =
However, there exists various other window functions whickrk - DFT of na(n) are discrete samples Of((ejw) at
also have good behavior in terms of certain parameters ng\f: 2k Therefore, X (k) = X(e/*)| _z.x are the DFT
their frequency responses [1]. In practice, selecting thtaal coefficijénts ofna(n). YN

window function for speech processing application is still gjnce z(n) is a windowed speech frame, it can be rep-

an open challenge_[2]. Recently, alternatives of Hammingsented asu(n)s(n), wheres(n) is raw speech frame and
window have drawn attention of the researchérs [3], [4]. F%(n) is window function. We propose new window function
example, performance of speaker recognition systems loased,g w(n) = nw(n). The windowed speech frame is then
MFCC, extracted using multitaper window function, are ShOWrepresented as(n) = w(n)s(n).

comparatively robust than existing single tapered Hamminggom generalization of differentiation in frequency prage

window based approachi[S]. _ . “we can write that, for an integer, DTFT of n"x(n) is
In this work, we propose a simple time domain processmégdfx(

ejw) . .
g o . : == . Therefore, the proposed window functionwoth
of speech after it is multiplied with a standard window. Th rdeﬁvtvuindow can be Writtepn gsfw(n) Standard Hamming
processing is based on well-knowdifference in frequency window can be viewed agero order windowof proposed

property (?f discrete ti_me Fourier trgnsform [Q]' and it “ahmily. The window functions are shown in Fifll 1 for first
be easily integrated with standard window during DFT co ind second order along with Hamming window. Note that

¥ contrast to frequently used window functions, the newly
{Atroduced family of window functions is asymmetric and non
?apered.

X(e¥) =

is computed from those differentiated Fourier coefficient;
There are evidences that speaker discriminating attrilsite
present in slope of power spectru [7] as well as in pha&e

information [8]. In this paper, we have mathematically show Characteristics of the_proposed wmdovx_/ function o
Commonly, the effectiveness of an window function is
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dH(w) _ d[X(e7)]
dw N dw
XR(W) dXR(w)
Xp(w) + Xf(w)  dw
) ) ) No‘mggmpled 0 i 10 10 X (w) dXr (w)

XGw) + Xpw) dw @

On the other hand, magnitude spectrum of the modified
signal can be written as,

) () e

dXR( )

Magnitude (dB) —

| dX (e7)
4 08 06 -04 02 0 02 04 06 08 1 (w ) = T
Normalized Frequency (x trad/sample) w

Now, if we consider that a(w) cos p(w)

Fig. 1. Comparison of Hamming window (black) with first (blue) andes®l gnd d)fiﬂfw) = a(w) sin tp( )' then a(w)

(red) order differentiation based window in (a)time domaimd (b)frequency 5 3 04X ()
domain for a window of sizd60 samples. Amplitude of all the window dXR(w) + dX1(w) and (w) — tan—! .
functions are normalized to one for visual clarity. dw dw ® - dXde(W) -
tan~! dX’(“)
Th d)i‘ Ao f E 3
the application of this window function in speech feature erefore, from Equation({] 3),
extraction. We have calculated three widely used perfooman -
a(w) = H(w) 4)

evaluation metrics: spectral leakage factor, relative $abe
attenuation, and mainlobe width-8§dB) of the Hamming  On the other hand, if we pu{fRi% = cos p(w)
and proposed windows of different orders. The results are X1(w) . VX (@) +XG(

shown in Tabld]l for window size of60 samples. It can be and V@ X2 sin ¢(w) in Equation @) we get,
observed that with the increase of order, the spectral tgaka !

increases and sidelobe attenuation decreases to some extendH (w) Xpr(w)

which have minor effect in recognition performance. Howeve dw o XZ(w) + X2(w) x a(w) cos p(w)
considerable increase in mainlobe width will help to estena Xr(w)
smooth power spectrum, and that is expected to improve > > x a(w) sin p(w)
recognition performancé[9]. Xp(w) + X7 (W)
= a(w)cosp(w) cos p(w)
TABLE | . .
Performance metrics of various window functions. Sequéerogth is 160 +a(w) sin ¢(w) sin p(w)
samples i.e20ms for sample rat8kHz. — a(w) Cos[gb(w) _ cp(w)]
. Leakage Relative Mainlobe
Window | “cocior | Sidelobe Attenuation|  Width dH (w) = a(w) cos[p(w) — p(w)] (5)
Hamming | 0.04% 2.6 4B 0.015625 dw
=1 0.06% 426 dB 0.017578 1 Xr(w)
T=2 [ 017% 37938 0.018555 whereg(w) = tan™" 7.
Therefore, from Equa‘uon[(] 4) and Equatiohl( 5), we get,
. . - dH (w)
C. Effect of the proposed window in power spectrum compu- H(w) = —~= xsec[(w) — p(w)] (6)

tation
Finally, we can write the final expression of the output

In this subsection, we find out a mathematical connecti Wer spectrumD( ) as,

between power spectrum of proposed windowed speech fra
and power spectrum of original Hamming windowed speech
frame. A2(w) = — [dP(w)

Let us assume that power spectrum of Hamming windowed 4P(w) | dw
signal is given byP(w), and power spectrum of the proposed

}>wmﬂww—wwn.(n

window is P(w). Therefore P(w) = H?(w) = | X (e/*) } and
N N Gwy |2
P(w) = H*(w) = ‘%‘ , whereH(w) and A (w) are  The term 2« in Equation (7) corresponds to the slope

magnitude spectrum of two signals respectively. Now, sincé the power spectrum of the Hamming windowed speech at
X (e7«) can be decomposed into a reAli(w) and imaginary, frequencyw. Hence, as a consequence of power spectrum
X (w) part, the slope of magnitude spectrum of Hammingomputation from derivative of fourier transform, we obtai

windowed speech signal can be written as, a modified power spectrum which is related to the slope of



original power spectrum. Apart from it, the newly formuldte and support vector machine (GSV-SVM) [11]. This is based on

power spectrum is also related to phase spectrum of thelsigtiee same UBM of GMM-UBM system. The negative examples

¢(w). Using a more complicated computation, it can also i SVM are obtained from the same data used for UBM

shown that the higher order version of proposed differéiotia preparation. Experiments are also carried out with nuisanc

window (e.g. forr > 1) will compute power spectrum with attribute projection (NAP) based channel compensatioh-tec

higher order derivative oP(w). nique [12]. Channel factors are obtained using the speech
The modified DFT magnitude coefficients are nothing bsignals of SRE004. All together,699 utterances ot01 male

the samples off (w) at w = % Therefore, mel cepstrumand905 utterances of42 female are utilized to train the NAP

computation using proposed window integrates the slope mrojection matrix of co-rani4.

power spectrum, phase, and of course, power spectrum of the

signal. It is expected that the speech feature will be MOEE Results

efficient compared to the standard cepstrum which is solely

based on power spectrum. Speaker recognition experiments are carried out with diffe

ent window function keeping other blocks identical i.e.-pre
processing, feature extraction and classification areigelyc
- same for all various window based systems. We first evaluate
A. Speaker Recognition Setup the performance on SREN01 and SRE2004 with classical
1) Database: SV experiments are conducted on multipl&SMM-UBM system. The performance of proposed windows
large population NIST corpora for obtaining statisticadig- (first and second order) are compared with single tapered
nificant results. We have chosen SRBE01, SRE 2004, and Hamming window as well as recently proposed multitaper
SRE2006. The database descriptions for current experimenténdow. The performance has been evaluated with multipeak
are briefly shown in Tablg]ll. taper of size (denoted by in Table[) 6 and 12 as
mentioned in[[1B],[[5]. The results are shown in Tdblé Il and

IIl. EXPERIMENTAL SETUP AND RESULTS

TABLE 1| . :
Database description (coretest section) for the perforceaavaluation of .corr.espo-ndlng d,eteCt!Qn error trade-off (DET) p|0tS aw
various window functions. in Fig.[2(i) and Fig[2(ii). Equal error rate (EER) and minimu
detection cost function (minDCF) of SV systems based on
| [ SRE 2001 SRE 2004 | SRE 2006 | newly proposed window functior!s are (_:onsisten_tly better fp
Target Models| 74c, 100; | 2465, 370; | 3545, 46% thh the databases. In comparison Wlth baseline Hamming
Test Segmenty 2038 1174 3735 window based system, we have obtain@8% and 7.74%
tha' If_'al' 222043188 2263%264 531601%8 relative improvement in EER, an@l26% and 5.59% relative
rue Irial . . .
mpostor Tral | 20380 3838 47452 improvement in minDCF for SRB001. In contrast, for SRE

2004, the relative improvements in EER aré®6% and4.26%,

ﬁnd for minDCF these are15% and3.45%. Interestingly, we

for different types of window functions38 dimensional fea- ave observed that multitaper windowing techniques do not
ture vectors are computed usirty filters linearly spaced g“ﬁ] ?rggg[ﬁer{ﬁ;m;;?gr?nzrfg?iza;ﬁﬂvﬁ ?g?%?fsf:?emflgzgi'
in Mel scale from speech frames of sizéms (with 50% flers on SRE2006. Also, in this case, we have achieved con-

overlap). Detailed explanation of used MFCC computatio .
technigzje is availablepin [7] P sthtent and reasonable performance improvement for peapos

e T indow based SV system. The DET plot is shown in Elg. 2(iii)
3) Classifier Description: State-of-the art speaker recog—WIn X
nition system uses Gaussian mixture model-universal bact,R[ both GMM-UBM and GSV-SVM (with NAP) system. We

ground model (GMM-UBM) based classifier [10]. The speec‘f‘lan easily interpret from the_ curves that S.V system based on
data for UBM training are taken from development data (ﬁ:e prqpose_d window functlon_s are conS|ste_ntIy better than
SRE2001 and training section of SRE)03 for the evaluation amming window based baseline sy_stem. It is also observed
of SRE2001 and SRE2004 respectively. Number of mixturesthat performgnces of se.cond order window based systems are
are set aR56 for these experiments. Here, gender dependé?ﬁtter than first order window based system.
GMM clusters are initialized using binary split based vecto
quantization. The final UBM parameters are estimated using IV. CONCLUSION
EM algorithm. Target models are created by adapting only theln this paper, we have focused on the usage of a class
means of the UBM with relevance factbt. During the score of window functions by which more effective speech feature
computation, tol Gaussians of corresponding backgroundan be computed. The newly formulated feature represents
model per each frame are considered. the power spectrum of the original spectrum as well as
For the evaluation of SRB006, the GMM-UBM system its derivative. In addition to that, it also integrates phas
is trained with512 mixtures of gender dependent UBM withinformation which is also relevant for speaker recognition
complete one side training data of SRE4 (i.e. 246 male and Speaker recognition system based on proposed windowing
370 female utteranceskt-score normalization is performedschemes are evaluated on different NIST databases. We have
on raw score of GMM-UBM system. Normalization data ischieved consistent performance improvement over baselin
obtained from one side section of SRE04. Experiments are Hamming window based technique on various combinations
also conducted using classifiers based on GMM superveatdrclassifiers and databases.

2) Feature Extraction:MFCC features have been extracte



Miss probability (in %)

TABLE IlI
SV performance on NIST SRE 2001 and NIST SRE 2004 using ¥avindow functions for GMM-UBM based system.

Window NIST SRE 2001 NIST SRE 2004
Type EER (in %) | minDCF x 100 | EER (in %) [ minDCF x 100
Hamming 8.2434 3.5763 14.9629 6.3231
Multitaper & = 6) 8.0471 3.5778 15.2501 6.4363
Multitaper = 12) 10.9372 4.6606 18.0196 7.2271
First Order 8.1943 3.5672 14.6694 6.2501
Second Order 7.6055 3.3763 14.3255 6.1050
TABLE IV

SV performance using various systems for different windowetion.

Window GMM-UBM GSV-SVM GSV-SVM (with NAP)

Type EER (in %) | minDCF x 100 | EER (in %) [ minDCF x 100 | EER (in %) [ minDCF x 100
Hamming 11.4493 4.4702 8.8471 4.0330 6.6419 3.1161
Multitaper & = 6) 11.6981 4.5493 9.0705 4.2211 6.8886 3.2725
Multitaper = 12) 14.2971 5.2299 11.430 5.0286 8.2416 3.9699
Proposed First Order 10.9856 4.3521 8.3792 4.0233 6.2503 3.0961
Proposed Second Ordgr 10.7559 4.2627 8.3242 3.9555 6.1359 3.0646

(i) SRE 2001 (i) SRE 2004 (ii) SRE 2006
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Fig. 2. DET plots of different window based systems (Black: Hamyrilge: first order, Red: second order) are shown for ()SRBRQii))SRE 2004,
(ii)SRE 2006. In subfigure (iii), the dotted lines show festor GSV-SVM system with NAP.

(1]

(2]
(3]

(4]

(5]

(6]
(7]

(8]

REFERENCES [9] J. G. Proakis and D. G. ManolakiBigital Signal Processing: Princi-
ples, Algorithms, And Application$ourth edition ed. Pearson, 2007.
F. Harris, “On the use of windows for harmonic analysighithe discrete [10] D. Reynolds, T. Quatieri, and D. R.B., "Speaker verfiica using

fourier transform,"Proceedings of the IEEEol. 66, no. 1, pp. 51 — 83, adapted gaussian mixture modelBjgital Signal Processingvol. 10,
jan. 1978. no. 1-3, pp. 1941, 2000.

J. O. Smith Spectral Audio Signal ProcessingW3K Publishing, 2011. [11] W. Campbell, D. Sturim, and D. Reynolds, “Support veatoachines
M. Mottaghi-Kashtiban and M. Shayesteh, “New efficienindow using gmm supervectors for speaker verificatioBfgnal Processing
function, replacement for the hamming windoBjgnal Processing, IET Letters, IEEE vol. 13, no. 5, pp. 308 — 311, may 2006.

vol. 5, no. 5, pp. 499 —505, august 2011. [12] W. Campbell, D. S_;urlm, D. ‘Reynolds, and A. Solomondf§vm
Y. Wang, “An effective approach to finding differentiatovindow based speaker verification using a gmm supervector kerreélnap
functions based on sinc sum functiorGircuits, Systems, and Signal variability compensation,” irAcoustics, Speech and Signal Processing,
Processing 2012, aricle in Press. 2006. ICASSP 2006 Proceedings. 2006 IEEE Internationalfé€ence
J. Sandberg, M. Hansson-Sandsten, T. Kinnunen, R. S&iBllandrin, on, vol. 1, may 2006, p. .

and P. Borgnat, “Multitaper estimation of frequency-watipepstra with [13] T- Kinnunen, R. Saeidi, F. Sedlak, K. Lee, J. Sandberg,Hdnsson-
application to speaker verificationSignal Processing Letters, IEEE Sandsten, and H. Li, “Low-variance multitaper mfcc feaura case
vol. 17, no. 4, pp. 343 —346, april 2010. study in robust speaker verification[EEE Transactions on Audio,

A. Oppenheim, S. Willsky, and S. NawaBjgnals And Systemsecond Speech and Language Processidg12, article in Press.

edition ed. PHI Learning, 2009.

M. Sahidullah and G. Saha, “Design, analysis and expamia eval-
uation of block based transformation in mfcc computation dpeaker
recognition,” Speech Communicatiprol. 54, no. 4, pp. 543-565, May
2012.

S. Nakagawa, L. Wang, and S. Ohtsuka, “Speaker ideritifitaand
verification by combining mfcc and phase informatioAfidio, Speech,
and Language Processing, IEEE Transactions wol. 20, no. 4, pp.
1085 —1095, may 2012.



	I Introduction
	II Proposed Windowing Method
	II-A Design of proposed window function
	II-B Characteristics of the proposed window function
	II-C Effect of the proposed window in power spectrum computation

	III Experimental Setup and Results
	III-A Speaker Recognition Setup
	III-A1 Database
	III-A2 Feature Extraction
	III-A3 Classifier Description

	III-B Results

	IV Conclusion
	References

