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Measuring the Influence of Observations in HMMs
through the Kullback-Leibler Distance

Vittorio Perduca and Gregory Nuel

Abstract—We measure the influence of individual observations
on the sequence of the hidden states of the Hidden Markov
Model (HMM) by means of the Kullback-Leibler distance (KLD).
Namely, we consider the KLD between the conditional distribu-
tion of the hidden states’ chain given the complete sequence
of observations and the conditional distribution of the hidden
chain given all the observations but the one under consideration.
We introduce a linear complexity algorithm for computing the
influence of all the observations. As an illustration, we investigate
the application of our algorithm to the problem of detecting
meaningful observations in HMM data series.

Index Terms—Hidden Markov models, relative entropy,
forward-backward algorithm, outlier detection, local outlier fac-
tor

I. INTRODUCTION

THE Hidden Markov Model (HMM) is a standard tool
in many applications, including signal processing and

speech recognition [1], [2], [3] and computational biology
[4]. In a typical HMM, let S1:n = (S1, . . . , Sn) be the
Markov sequence of hidden variables (or states) and X1:n =
(X1, . . . , Xn) the sequence of observation variables1. In this
letter we address the problem of measuring the influence of
an observation Xj = xj on the distribution of the hidden
sequence S1:n.

We start by fixing notation. For simplicity’s sake, we
consider homogeneous HMMs and denote the parameters of
the model with P(Xi = x|Si = s) = β(s, x) (emissions),
P(Si = s|Si−1 = r) = α(r, s) (transitions) and P(S1 =
s) = γ(s). The model is fully specified by the conditional
dependencies among the variables depicted in Fig. 1 which
determine the following factorization of the joint probability
distribution

P(X1:n = x1:n, S1:n = s1:n) =

γ(s)

n∏
i=2

α(si−1, si)

n∏
i=1

β(si, xi),

where si, xi are taken in the sets of all possible outcomes of Si
and Xi (for continuous variables simply replace probabilities
with densities and sums with integrals). For simplicity of
notation, in most equations we omit to write explicitly the
outcomes of the variables.

An important inference problem in HMMs is computing
the conditional (posterior) distribution of the hidden sequence
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1In the absence of a widespread standard notation, symbols denoting HMM
variables vary from author to author.

given an evidence. In standard applications, the evidence is
a complete instantiation of the observable sequence, E =
{X1:n = x1:n} for some x1:n. For a fixed j ∈ {1, . . . , n}, we
denote E−j the evidence {X−j = x−j}, where X−j denotes
the sequence of all the observation variables except Xj .

Our suggestion for measuring the influence of an obser-
vation Xj = xj is based on the following question: what
is the contribution of Xj = xj to the posterior distribution
S1:n|{X1:n = x1:n} of the hidden sequence given the com-
plete sequence of observations? That is, how dissimilar are the
posterior distributions P(S1:n|E) and P(S1:n|E−j)? The more
these two posterior distributions are distant, the more Xj = xj
must be influential.

The Kullback-Leibler distance (KLD) (or relative entropy)
arises in many applications as an appropriate measurement
of the distance between two probability distributions [5], [6].
Following [7] and [8] (in the context of linear regression), we
suggest to measure the influence of Xj = xj through the KLD

Kj :=
∑
S1:n

P(S1:n|E−j) log
P(S1:n|E−j)
P(S1:n|E)

.

By definition, Kj measures the influence of observation xj on
the posterior distribution of the hidden states rather than on the
parameter estimate. Kj is therefore an appropriate influence
measure when the quantity of interest is the posterior distri-
bution as it is often the case in practical applications such as
speech recognition [3], data segmentation [9], bioinformatics
[10], genetics [11].

In this letter we address the problem of computing effi-
ciently the vector (Kj)j=1,...,n of all the KL distances, one
for each observation. To the best of our knowledge, the
computation of the KLD between the posterior distributions
of the hidden sequence of an HMM conditioned on two
distinct evidences was not studied before, the main efforts
being rather aimed at computing efficiently the KLD between
the distributions of the observation sequence of an HMM with
respect to two distinct sets of parameters [6], [12], [13].

A straightforward computation of (Kj)j=1,...,n based on
the standard forward-backward algorithm for HMMs leads to
a quadratic complexity in the number of observations; our
main contribution is a linear time algorithm based on simple
recursive formulae.

As an illustration, we apply our algorithm to a time series
of temperature changes and discuss the practical interest of
the suggested influence measure.
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X1 Xj−1 Xj Xj+1 Xn

S1 Sj−1 Sj Sj+1 Sn

Fig. 1: HMM topology. Sj : hidden variable, Xj : observed
variable.

II. COMPUTATION OF THE INFLUENCE MEASURE

We start by recalling that the posterior distribution
P(S1:n|E) of the hidden sequence given the standard evidence
is an heterogeneous Markov sequence whose transition prob-
abilities are computed in O(nm2) steps with the standard
forward-backward algorithm, where m is the is the number of
possible outcomes of each hidden variable, [2]. The forward
and backward quantities are defined as Fi(s) := P(X1:i, Si =
s), Bi(s) = P(Xi+1:n|Si = s) and are computed recursively
with Eqs. (1) and (2).

Similarly to P(S1:n|E), the computation of P(S1:n|E−j),
for a fixed j, requires O(nm2) steps: it is easy to adapt the
forward-backward algorithm to E−j by simply marginalizing
out the variable Xj in all the formulae and propagating the
new forward and backward quantities thus obtained.

It is straightforward to compute recursively the KLD be-
tween two heterogeneous Markov Chain; as a consequence,
a direct approach based on standard recursions leads to a
O(nm2) time complexity for computing Kj for a fixed j.
However, the required marginalization of the forward and
backward quantities depends on the fixed j and therefore it is
necessary to compute a distinct set of forward and backward
quantities for each j. As a consequence, the resulting com-
plexity for computing the vector (Kj)j=1,...,n is O(n2m2).

Our principal contribution are new recursive formulae that
reduce this complexity toO(nm2). We start with two technical
lemmas that lead to our original algorithm.

Lemma 1: For an arbitrary fixed j ∈ {1, . . . , n} :

Kj =
∑
Sj

P(Sj |E−j) log
P(Sj |E−j)
P(Sj |E)

.

Proof: We start by observing that the following factor-
izations hold:

P(S1:n|E−j) = P(Sj |E−j)P(S1:j−1|Sj , E−j)P(Sj+1:n|Sj , E−j)

and

P(S1:n|E) = P(Sj |E)P(S1:j−1|Sj , E)P(Sj+1:n|Sj , E).

The key point is that in the last equation we have

P(Sj+1:n|Sj , E) = P(Sj+1:n|Sj , E−j)

P(S1:j−1|Sj , E) = P(S1:j−1|Sj , E−j)

because Sj+1:n and Xj are conditionally independent given
Sj , and S1:j−1 and Xj are conditionally independent given
Sj , see Fig. 1. Then Kj =

∑
Sj

P(Sj |E−j) log P(Sj |E−j)
P(Sj |E) ×∑

S1:j−1
P(S1:j−1|Sj , E−j)

∑
Sj+1:n

P(Sj+1:n|Sj , E−j).

As a consequence of this lemma, the key for computing ef-
ficiently (Kj)j=1,...,n is an efficient computation of the factors
P(Sj |E) and P(Sj |E−j) for all j = 1, . . . , n. For a given j,
P(Sj |E) can be computed in O(nm2) steps using the standard
forward-backward algorithm: P(Sj = s, E) = Fj(s)Bj(s) and
hence P(Sj = s|E) ∝ Fj(s)Bj(s), where the standard forward
and backward quantities are computed recursively with

Fi(s) =
∑
r

Fi−1(r)α(r, s)β(s, xi) (1)

and

Bi−1(r) =
∑
s

α(r, s)β(s, xi)Bi(s). (2)

We show a similar result for P(Sj |E−j):
Lemma 2: For an arbitrary fixed j ∈ {1, . . . , n} :

P(Sj = s, E−j) = F ∗j (s)Bj(s),

where Bj is the standard backward quantity and F ∗j is com-
puted recursively from the standard forward quantities with

F ∗i (s) =
∑
r

Fi−1(r)α(r, s) for i = 2, . . . , n, (3)

with F ∗1 (s) = γ(s). Moreover the time complexity for com-
puting P(Sj = s|E−j) ∝ F ∗j (s)Bj(s) for all j = 1, . . . , n is
O(nm2).

Proof: For a given j, we have P(Sj = s, E−j) =∑
y

P(Sj = s, E−j , Xj = y) =
∑
y

P(Sj = s, Ey),

where Ey is the standard evidence {X−j = x−j , Xj = y}.
For each y there is a distinct set of standard forward and
backward quantities F yi , B

y
i ; however it is easy to see that

F yi ≡ Fi for i ≤ j− 1 and Byi ≡ Bi for i ≥ j. It follows that∑
y P(Sj = s, Ey) =∑
y

F yj (s)B
y
j (s) = Bj(s)

∑
y

F yj (s) =

Bj(s)
∑
y

∑
r

F yj−1(r)α(r, s)β(s, y) =

Bj(s)
∑
r

Fj−1(r)α(r, s).

Our main result is a straightforward consequence of the two
lemmas above:

Theorem 3: For an arbitrary fixed j ∈ {1, . . . , n} :

Kj =
∑
s

F ∗j (s)Bj(s)∑
r F
∗
j (r)Bj(r)

log

(
F ∗j (s)

Fj(s)
·
∑
r Fj(r)Bj(r)∑
r F
∗
j (r)Bj(r)

)
,

where the quantities (Fi)i=1,...,n, (Bi)i=1,...,n and
(F ∗i )i=1,...,n are computed once and for all independently
of j using the recursions (1), (2), (3). The complexity of
computing (Kj)j=1,...,n is O(nm2).
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Fig. 2: KLD function (Kj)j=1,...,n for the temperature change
time series. The five highest Kj are: K1917 = 2.96, K1915 =
2.30, K1900 = 1.82, K1898 = 1.47, K1914 = 1.46; the
corresponding datapoints are depicted as empty dots.

III. APPLICATION TO TIME SERIES SEGMENTATION

We illustrate the practical interest of our influence measure
on a real dataset, namely a time series consisting of 106 annual
changes in global temperature between 1880 and 1985 [14].
Following the approach suggested by [9], the dataset can be
modeled with an homoscedastic HMM in which each obser-
vation follows a Gaussian distribution whose mean depends
on the corresponding hidden state; we assume that there are
three hidden states. We estimated the parameters of the HMM
with the EM algorithm and obtained for the three hidden
Gaussian distributions the means µ1 = −0.372, µ2 = 0.069,
µ3 = −0.068, and standard deviation σ = 0.114; moreover the
transition matrix is π(i, j) = η/2 if i 6= j and π(i, i) = 1− η,
where the estimated transition rate is η = 0.085.

Fig. 2 shows the temperature time series together with the
KLD Kj for each j. Five years clearly appear to have a
greater influence on the posterior distribution of the hidden
states: 1917, 1915, 1900, 1898, 1914. It might be interesting to
investigate the reasons why these five years are so influential,
looking for either specific climatic events or possible changes
in the data collection protocol.

In order to validate the findings in Fig. 2, we further
investigated the effect of the five most influential observations
on the posterior distribution of the segmentation by comparing
the marginal posterior distributions obtained with all the obser-
vations and after removing the five most influential ones, see
Fig. 3. Unsurprisingly, the most dramatic changes occur in the
neighborhood of the removed data. When all the observations
are taken into account, the period 1880-1920 is characterized
by a long segment of negative annual temperature change
interrupted by two short periods of slightly positive annual
change around years 1900 and 1914 (Fig. 3, top). When the
most influential observations are not considered, these two
interruptions basically disappear (Fig. 3, bottom).

The KLD measure of influence is hence clearly effective in
pointing out observations that have a dramatic effect on the
posterior segmentation. These observations can be interpreted
either as critical and particularly meaningful data or as outliers
(i.e. observations that are not generated by the underlying
statistical model).
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Fig. 3: Marginal posterior distributions P(Sj |obs) of the three-
level segmentation considering all the observations (top) and
after removing the five most influential ones (bottom). Solid
black line: P(Sj = 1|obs), i.e. xj is Gaussian with mean µ1 =
−0.372; dashed red: P(Sj = 2|obs) with µ2 = 0.069; dotted
blue: P(Sj = 3|obs) with µ3 = −0.068.

Application to Outlier Detection

Following [15] (in the context of linear regression), we ar-
gue that the KLD-based measure of influence of an observation
can be also used for effective outlier detection in data modeled
with the HMM. Indeed, if Xj = xj is an outlier, then it must
have a strong influence on the posterior distribution of the
hidden variables, which in turn, must differ significantly from
the posterior distribution of the hidden variables conditioned
on all the observations but Xj . In other words, we expect the
KLD distance Kj to be significantly larger when Xj = xj is
an outlier (an illustration supporting this assumption can be
found in the Supplementary Material).

In order to explore whether the KLD is an appropriate
measure for outlier detection, we considered semi-parametric
simulations based on the time series of changes in global
temperature described above. The original data is assumed
to be free of outliers. 1000 simulations under the null hy-
pothesis H0 (no outliers) were obtained by random sampling
n = 106/2 = 53 data points in the original time series. 1000
simulations under the alternative hypothesis H1 (presence of
outliers) were obtained by sampling n = 53 data points
from the original time series and adding a Gaussian noise
N (0, δ2) to each of them with probability 0.05. Hence, the
resulting average number of outliers in each H1 simulation is
0.05 · n = 2.65.

For each simulation, we computed the following global
statistics for outlier detection: the maximum Kj , the maximum
absolute normalized z-score (using a three component mixture
model) and the maximum Local Outlier Factor (LOF) score
computed with the R package Rlof [16] after rescaling both
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TABLE I: Performance of methods for outlier detection:
empirical AUC with 95% confidence intervals, sample size
= 400. δ is the standard deviation of the Gaussian noise
characterizing outliers.

Method δ = 0.5 δ = 2.0 δ = 3.0

KLD 0.62 [0.57, 0.68] 0.79 [0.74, 0.84] 0.86 [0.82, 0.90]

Z-value 0.58 [0.52, 0.64] 0.61 [0.55, 0.66] 0.59 [0.53, 0.65]

LOF 0.73 [0.68, 0.78] 0.93 [0.90, 0.96] 0.94 [0.91, 0.96]

year and temperature axes. Details on the statistics can be
found in the Supplementary Material.

The performances of the three global statistics for three
different values of δ were assessed with the empirical AUC
(computed with [17]); the results are depicted in Table I. The
statistics based on the Z-value have very poor performance,
whereas the KLD-based statistics has a good discriminating
power for δ ≥ 2.0. However, the method consisting in
computing the LOF scores after normalizing both axes prove
to be very performant for each value of δ. All three methods
are very fast: it takes less than 0.5 seconds for generating a
simulation and computing all three statistics.

IV. CONCLUSIONS

An interesting question in Hidden Markov Models is assess-
ing the relative importance of each observation with respect to
the sequence of hidden states. In order to measure how influ-
ential is the j-th observation, we suggest to use the Kullback-
Leibler distance Kj between the conditional distribution of
the hidden sequence given the whole observation sequence
and the conditional distribution of the hidden sequence given
all the observations but the j-th one. The suggested measure
of influence focuses on the posterior distribution of the hidden
sequence rather than on the parameter estimate (like in sensi-
tivity analysis) and it is therefore suitable for problems where
the information of interest is the hidden sequence (speech
recognition [3], genetics [11], bioinformatics [10])

The most important contribution of this letter is a novel
linear complexity algorithm for computing the measures of
influence of all the observations. Our algorithm is based on
simple recursions derived from the forward-backward algo-
rithm for HMMs and can be easily extended in order to take
into account pairs, triplets or h consecutive observations. In
this case the complexity is O(nhm2). The algorithm can be
also extended to more complex configurations of observations,
the resulting complexity depends on the combinatorics of the
configuration.

We showed that the KLD influence measure can help to
detect outliers in time series modeled by HMMs, the intuition
being that anomalies must be more influential than other
observations. In this context, the KLD-based method proves
to be efficient for global detection, even though it is less
performant than specific methods such as the LOF algorithm
(after appropriate rescaling).

However, the main interest of the KLD measure of influence
is the detection of individual observations which, rather than
being outliers, are meaningful values playing a critical role

in the problem under consideration. New knowledge can be
uncovered by investigating the most influential observations
found with our influence measure. For example, in the context
of protein structure analysis, structural alphabet are encoded
through HMMs [10]. Pointing out highly influential residuals
in the encoding through the KLD measure might reveal
interesting structural properties (e.g. alternative 3D-structures).
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Sciences Mathématiques de Paris; his research interests include belief prop-
agation algorithms for Bayesian networks with applications in computational
biology.

Gregory Nuel received the Ph.D. in mathematics and the Habilitation
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APPENDIX
SUPPLEMENTARY MATERIAL WITH TECHNICAL DETAILS

APPLICATION TO OUTLIER DETECTION

In this section, we give more details on our application of
the KLD measure of influence to the detection of outliers in
HMMs.

A few methods based on the HMM have been developed
for outlier detection [18], [19], [20]. In the main paper we
consider a related yet different problem, namely the detection
of outliers in data modeled with the HMM, for instance time
series. This problem is not new in the literature, for instance
an ad hoc model for outliers in data modeled by HMMs was
introduced in a Bayesian framework in [21]. Other authors
suggested to tackle the problem by means of a robust Viterbi
algorithm performing a joint decoding and outlier detection
during the Viterbi search [22]. Following [15] (in the context
of linear regression) we suggest to detect outliers in HMMs by
means of our KLD-based measure of observation influence.

An outlier is an observation that is not generated by the
underlying statistical model. Since HMMs are intrinsically
heterogeneous, the detection of outliers in data modeled by
HMMs is a challenging problem. For instance, change point-
detection methods based on HMMs are known to be particu-
larly sensitive to the presence of outliers in the sense that a
single outlier can result in a segment consisting in just one
point [23], [24].

As explained in the main paper, we expect the KLD distance
Kj to be significantly larger when Xj = xj is an outlier.
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Fig. 4: KLD function (Kj)j=1,...,n for the original time series
(top) and for the times series with two outliers artificially
added (triangles): x1884 = 0.2, x1939 = −0.6.

A. Illustration

Consider the same time series consisting of 106 annual
changes in global temperature between 1880 and 1985 as in
the main paper. The dataset can be modeled with an HMM
in which each observation follows a Gaussian distribution
whose mean depends on the corresponding hidden state. The
upper plot in Fig. 4 shows the KLD function computed
after estimating the parameters with the EM algorithm (same
function as in the upper plot of Fig. 2 in the main text but on a
different scale). We assume that the original data is outlier free
(as we explain in the main text, the peaks in the figure can be
interpreted as pointers to meaningful observations). However,
if the dataset contains outliers, can we detect them with our
measure of influence based on the KLD? In order to answer
this question, we manually added two outliers and re-computed
the KLD function, after re-estimating the parameters. The
results are depicted in the lower plot of Fig. 4 and clearly show
that the KLD function has two peaks in the two outliers.

B. Comparison with other methods

We give here the details of the empirical comparison study
whose results are reported in the main paper.

Data. We considered semi-parametric simulations based on
the time series of changes in global temperature described
above. The original data is assumed to be free of outliers.
1000 simulations under the null hypothesis H0 (no outliers)
were obtained by random sampling n = 106/2 = 53 data
points in the original time series. 1000 simulations under the
alternative hypothesis H1 (presence of outliers) were obtained
by sampling n = 53 data points from the original time
series and adding a Gaussian noise N (0, δ2) to each of them
with probability 0.05. Hence, the resulting average number of
outliers in each H1 simulation is 0.05 · n = 2.65.
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We tested the global hypothesis H1 that the data contain at
least one outlier against the hypothesis H0 that there are no
outliers with the following alternative methods:

KLD-based method. For each simulation q we estimated
the parameters in the HMM modeling the dataset with the EM
algorithm and then computed the global statistics

Tq = max
j=1,...,n

Kj .

Z-value. For each simulation q we clustered the data with
the k-means algorithm (k = 3) and then computed the Z-value
Zj =

xj−µ
σ of each data point xj with respect to the mean

µ and standard deviation σ of its cluster. We considered the
global statistics

Sq = max
j=1,...,n

|Zj |.

Local Outlier Factor (LOF). The LOF algorithm is a
density based method [25]. For each data point, the LOF
score is calculated by comparing the local density of the
point (defined as the inverse of the average distance from
its r-nearest neighbors) to the average of the densities of its
neighbors. The score is interpreted as a measure of whether
the point is in a denser or sparser region of the dataset. A
ranking of the points as outliers is obtained by sorting them
according to their LOF scores.

The LOF score depends on the choice of the distance
parameter r; as suggested in [25] for each point we took the
maximal LOF score on a range of integer values for r, namely
r ∈ {10, . . . , 20}. We considered the global statistics

Lq = max
j=1,...,n

max
r=10,...,20

LOFr(x̃j , t̃j),

where x̃j and t̃j are the standardized values of xj and tj (i.e.
we rescaled both axes before computing the LOF scores). The
LOF scores were computed using the R package Rlof [16].

ROC analysis. We assessed the performance of each
method by means of the empirical Area Under the Curve
(AUC). The AUC measures the surface under the Receiver
Operating Characteristic (ROC) curve and can be qualitatively
interpreted as follows: AUC 6 0.6 means “fail”; 0.6 <
AUC 6 0.70 means “poor”; 0.7 < AUC 6 0.80 means “fair”;
0.8 < AUC 6 0.9 means “good”; 0.9 < AUC 6 1.0 means
“excellent”. AUC computations were performed with the R
package pROC [17] using the statistics computed for each
method and simulation.
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