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Abstract—We propose a novel method of constructing Dis-
persion Matrices (DM) for Coherent Space-Time Shift Keying
(CSTSK) relying on arbitrary PSK signal sets by exploiting codes
from division algebras. We show that classic codes from Cyclic
Division Algebras (CDA) may be interpreted as DMs conceived
for PSK signal sets. Hence various benefits of CDA codes such as
their ability to achieve full diversity are inherited by CSTSK. We
demonstrate that the proposed CDA based DMs are capable of
achieving a lower symbol error ratio than the existing DMs gen-
erated using the capacity as their optimization objective function
for both perfect and imperfect channel estimation.

Index Terms—Coding gain, diversity, space-time block code,
space-time shift keying, STBCs from division algebras.

I. INTRODUCTION

PATIAL MODULATION (SM) [1]-[7] is a novel
low-complexity Multiple-Input Multiple-Output (MIMO)
scheme that simply activates one out of M transmit antennas for
signalling. This scheme has attracted the attention of numerous
researchers and led to a number of novel schemes [8]-[16].
Coherent Space-Time Shift Keying (CSTSK) [9] is capable of
striking a flexible tradeoff between the attainable diversity and
multiplexing gain [9], [12]. This scheme was shown to exhibit
a better performance than the SM and SSK schemes, since it is
capable of achieving both transmit- and receive-diversity, rather
than only receive-diversity, as in SM. But, CSTSK needs mul-
tiple RF chains at the transmitter unlike SM. The information
bits in this scheme are first partitioned into two sets, and then one
of the sets is mapped to a point from a conventional signal set
like I,-QAM, or L-PSK, while the other set of bits to the index of
amatrix from a set of ) Dispersion Matrices (DM). Specifically,
the CSTSK scheme activates one out of ) (M x T')-element
DMs, which is then multiplied by one of the legitimate sym-
bols from an L-symbol constellation, where 7' is the number of
time-slots. This scheme offers a throughput independent of M,
given by R = (log, (@ - L)/T) bpcu where bpcu in short for
bits/channel use. The DMs in the existing scheme [9] are chosen
by maximizing the mutual information over a large set of unity-
average-power, complex valued, Gaussian random matrices. We
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refer to them as Capacity-Optimized DMs (CO-DM) which do
not necessarily minimize the Symbol Error Rate (SER) [17].
The focus of this paper is to design structured DMs that attain a
better bit error ratio (BER) performance than that given by the

DMs of the existing scheme.
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II. CSTSK SYSTEM AND SIGNAL MODEL

We consider a MIMO system having M transmit as well
as N receive antennas and a quasi-static, frequency-flat fading
channel, yielding:

[ p
Y=/ —HX,;, +N,,
i + INg,

where X; € CM*T is the transmitted Space-Time (ST) ma-
trix, Y; € CV*T is the received ST matrix, H; € CN*M
while N; € CV*T are the channel- and noise-matrices, respec-
tively. The entries of the channel- and noise-matrices are from a
circularly symmetric complex-valued Gaussian distribution i.e.,
CN(0,1) and CN (0, Ny), respectively, where Ny is the noise
variance, p is the average Signal to Noise Ratio (SNR) at each
receive antenna and ¢ indicates the block index in all the ma-
trices. Throughout this paper we assume M = T, that is, we
consider only full-diversity, minimum-delay DMs.

For the CSTSK scheme [9], we have X; = ng’p) =
5iqAip, where 5;, € C is a symbol from an L-symbol
constellation, S, A; , € CM*T is a DM from D, a set of DMs
with |D| = @, and ng’p ) € C, where C is a set of transmitted
ST matrices. We note that all the DMs A; , satisfy the unity
average transmission power constraint, i.e.,

Q)

tr[Ai, Ay = Tlor 1 <p< 0. @)

The notational representation of a typical CSTSK scheme used
is formulated as ‘CSTSK(M,N,T,Q), L-symbol constella-
tion’ [9].

Let ¢, be a product-map over a set of ordered pairs, X =
{(z1,22) | 1 € X1,22 € X} where X; and X5 are two
arbitrary sets, given by ¢, : (#1,%2) — x123. Then, the STSK
mapping of a symbol is carried out by applying a DM to the
transmitted ST matrix, which is formulated as (;, : § x D — C.

INotations: Boldface uppercase letters represent matrices and are indexed as
X ;. Furthermore, t7[X] and X denote the Trace and Hermitian of the matrix
X, respectively. I,. denotes an (r X 7)-element identity matrix. Greek letters
like ¢ indicate functions or mappings. Polynomials are represented as a function
of x, for example p( ). Calligraphic uppercase letters represent sets of matrices,
for example £. D C & implies that D is a subset of £ and |D| represents the
cardinality of D. Blackboard-bold font letters like @ represent fields. Upper
case letters are used to represent sets, fields, and extended fields. The extended
field F = Q(.5) represents an extension of the field of rational numbers @ over
some set S. f; or f; ; represent elements from a field or from a finite set.
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This mapping has to be one-to-one for the unambiguous de-
tection of the transmitted ST matrices. Furthermore, it is desir-
able to have rank(ng’p) - ng ’ )) = M forallp # p',orq #
q’ in order to achieve both full-diversity, and simultaneousl/}{j

high coding gain G = min ’ det AAH’

where A = (X{77) _
BER performance.
Upon vectorizing (1), we arrive at:

p _ _
=/ —H;xK; + N, 3
77 XK + 3)

where, Y; = vee(Y;) € CNTUH; = Ip o H; € CNTXMT,

V;: = vee(V;) € CVTXl,X = [vec(Ar),... ,vec(Ag)] 6

CMTXQ, and K; = [0,...,0,5”1/0 .0 € C9*l The
——’

—

X(q p);éx(q ') cC
X(q P )) for the sake of improving the

p—1
equivalent system model of (3) is frge from Inter-Channel
Interference (ICI), hence facilitates both single-antenna based
low-complexity Maximum Likelihood (ML) detection [16]
and reduced search-complexity Matched Filtering (MF)-based
near-ML detection [18].

A. Connection Between STBCs and STSK Schemes

Proposition 1: Any STBC, C, over a signal set .S” constitutes
an ICI-free system, if there exists a set of matrices £ such that
the map (,, : S X & — C is a bijection, where S is any conven-
tional signal set.

Proof: If there exists a set of (M x T')-element matrices
£ such that the mapping ¢, : S x £ — C is a bijection, then
we have Cp‘l(Xk) £ Cp‘l(Xl) for all X}, # X; € C, which
implies (s;,E;) # (sir,E;), where E;, E; € £. This sug-
gests that we have either ¢ # ¢ or § # jf, or both, thus
giving us |£] = |C|/|S]. Since we have ) = |€|, and x =
[vec(Eq), ..., vec(Eg)], it is clear from (3) that the STBC is
an [CI-free system. ]

We term this class of STBCs as Decomposable Dispersion
Codes (DDC). Note that DDCs are different from orthogonal
codes whose weight matrices satisfy Hurwitz-Radon orthogo-
nality condition.

III. PROPOSED FULL-RATE CDA CODE BASED
DECOMPOSABLE DISPERSION CODES

In this section we show that the codes from Cyclic Division
Algebra (CDA) [19] are DDCs and hence they may be used for
STSK schemes. We propose a method for obtaining DMs from
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CDA codes for achieving a desired rate and present a construc-
tion example for the CSTSK(2,2,2,8), BPSK system.

Considering codes constructed from CDAs over the field F' =
Q(S,t,war), we get the full-diversity, full-rate (M x M)-ele-
ment Space-Time (ST) codes [19] given by (4), shown at the
bottom of the page, where ¢ is the Galois group generator that
fixes f;; and maps t3; to wpstas, while the transcendental el-
ements ¢ and é are chosen from the unit circle to avoid infor-
mation loss [19]. Furthermore, we have |C| = LM asCisa
full-rate code.

For ease of presentation, we adopt the following notation for
describing the set in (4):

e R ]

¢ (1,0) 7 (0.1) M-

=) " o 6
FOM-10) fpM-21) L RM-1)

where, we have
K(j.k:):{zfial f}‘7i((4.)j\/[kt]\/[)i fii € Stor0<id, j<M— 1} .

In K U*) of (5), the superscript j captures the M distinct
sets containing M independent symbols each, i.e., { f;.} ",
and the superscript £ is the distinct index of the coefficients of
{f;.: 11251 associated with each column in (4).

Proposition 2: A CDA code constructed over an arbitrary
PSK signal set results in an ICI-free system, which hence may
be viewed as a STSK scheme. Thus, the CDA codes enjoy the
low-complexity detection benefits of the STSK scheme [16],
[18].

Proof: We present the proof in two steps.

Step I: Let F be an algebraic number field de-
fined by Q(S,t,wps), where ¢ is a transcendental
clement over @(S), and wy = /C/M | Let K
be an Mth degree algebraic extension of F over
ta = tYM e, K = F(t'/M). Thus, we can write
K =M piltar)'|fie Flori=0,1,....,M —1}.

Theorem 1: Let S, F' and K be defined as above. Let ¢, be
a product mapping as defined earlier. If ' = S in K, then the

map {, : S x K; — K, where we have K; = {(tM)’ +

M-1
Zz 0, z;élf(

{ < M — 1, is a bijection.
Proof: Proof is omitted here owing to space economy, but
it is publically available at [20].
Applying Theorem I to the set along the main diagonal of C
in (5), we arrive at

, 1 =0,1,. ..,J\J—l} for any 0 <

ZM ! Jo,i(tar)
ZM ! Fr,i(tar)t
Cc= ZM " fai(tar)i

M1 5
(52 Far—1i(wartar)
o1
Z Jo.i(wartar)’
Tt
Z Jri(wartar)

ZM Y Faroni(tan)t Zw Y s (ot

M-1 M ;
(521 h,z(wkf Lear)?

721, M ;
83 feilwny T )

M 1. M1 i
8y aileni ta) fi €S for 0<4, j<M—1 y, @)

A —1 M—1 4
Zi:o foslwy ™ tar)’
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Cr)(SXKI(f=0)) 61*((M—1v1) SE(LM-1)
KOO (sx kM) SRM D
. ) . (6)
F(M—1,0) R(M—2.1) Cp(SXR'sz}M_l))
o(3,k .
where, we have Kl(i ) {(ka Far)ln N

SV, fj,i(katM)i‘fjJ € Sfor0<i j<M-— 1}
for 0 < {lm}pimy <M — L.

Step I1: With the aid of Theorem 2 we will show below that
the off-diagonal sets in (5) can be decomposed into the product
of two sets.

Theorem 2: Let S, K, (p, and F' be defined as before. If we
have F' = S in K, then (,,: S x K +— K is a bijection.

Proof: Proof is omitted here due to space constraints, but
again, it is available at [20].

Applying Theorem 2 to the off-diagonal elements of (6), we
arrive at (7), shown at the bottom of the page. Thus, from (7)
we generate the bijective mapping ¢,,: S X £ — C, where,

[A(Z(IO,O) 6[?(M—1’1) 6K(1:M—1)
7 (1,0) 7-(0,1) o p(2Men)

e | K Ky, 5K ®
K(M'*LO) f((M;Q,D K(”’M’l)

Ly

and hence, from Proposition I we conclude that the CDA codes
result in an ICI-free system. . [ |

From (7), we can infer that |C| = L = |S|- || = L -
LM =1 and any set D C & can be used as a set of DMs. Thus,
CDA codes offer () number of DMs, where we have 1 < @ <
LM™=1 By contrast, for field-extension code based DMs we
have 1 < Q < LM~1 We refer to these DMs obtained from
the CDA codes as Cyclic Division Algebra code based DMs
(CDA-DM). For details about CDA based DMs for QAM signal
sets, refer to Section V in [20].

1) Example 1: Let S = {1,—1}, and t as well as § be
chosen from within the unit circle. Let furthermore the number
of transmit antennas be A/ = 2, and [; = I, = 1. From (8), we

1+ foita  6(fri0— N1 1752)] }
t € To, 0= J1, €S
& { [fl,o + fi1t2 (1— fot2) Ji
with |€] = |S]> = 8. In order to satisfy the unit av-

erage transmission energy constraint of (2), the matrices
in the set £ are scaled by 1/2 (in general 1/M) to arrive at
: 1+ fots 5(f10—f11752)]
D=<1/2]| . ; oo
{ / [fl,o + fiit2 (1= fot2)
Q = 8.

fm’ S S} with

(@) (b)
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Fig. 1. SER performance and DCMC capacity curves of CDA-DM and
CO-DM in CSTSK(2,2,2,8), BPSK (I? = 2). (a) ML and MF based detection
in CSTSK(2,2,2,8), BPSK. (b) DCMC capacity of CSTSK(2,2,2,8), BPSK.

IV. SIMULATION RESULTS AND DISCUSSION

Simulation Scenario: In all our simulations we have used
at least 10+ symbols, at an SER of 10~* for evaluating the
SER and assumed a block Rayleigh fading channel. The DMs
of Example 1 are used for CDA-DMs with t; = ¢7("/2) and
6 = e/B37/8) in our simulations. CO-DMs are generated by
maximizing the mutual information over a large set of DMs
having complex Gaussian entries satisfying the unity-average
power constraint. The coding gain offered by the CDA-DMs
is one, whereas that offered by CO-DMs is 0.0455. Hence, the
proposed DMs can be expected to give a better SER perfor-
mance at high SNRs than the CO-DMs. Under perfect CSIR
conditions the performance of the proposed CDA-DMs, and of
the CO-DMs is evaluated by considering both the ML and MF
based detector of [18]. By contrast, for imperfect CSIR the it-
erative detection/estimation algorithm of [21] is used with 2
training and 100 data carrying STSK blocks and the perfor-
mance of the Alamouti code employing 4-QAM signal set is
provided for benchmarking.

A. With Perfect CSIR

Fig. 1(a) characterizes the SER performance of the proposed
CDA-DM as well as of the existing CO-DM scheme in conjunc-
tion with the BPSK constellation for the () = 8 case. Due to the
better coding gain of the CDA-DM, the proposed scheme out-
performs the CO-DM scheme both for the ML and for the MF
based detectors. We observe that the CDA-DM scheme exhibits
an SNR gain of about 1 dB over the existing scheme at an SER
of 1073,

Fig. 1(b) shows the Discrete-input Continuous-output
Memoryless Channel (DCMC) capacity curves of the
CSTSK(2,2,2,8), BPSK scheme. We observe from Fig. 1(b)
that the CDA-DM scheme approaches the capacity of the

(0,0
Co(Sx K

CP(SXK(AjilYO) QP(SXR<A'172‘l))

Ca(Sx s

Go(SxKMY g (sx kDY)

C[,(Sxéfx’(l'M_l))
C[,(Sxéfx’(‘)'M_l))

(7

- (0,M—1)
C”(SXA’M )
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Fig. 2. Plot (a) gives the performance of Alamouti code, CDA-DM and
CO-DM in CSTSK(2,2,2,8), BPSK, under perturbed channel conditions with
ML detection. Plot (b) gives the performance of Alamouti code, CDA-DM
and CO-DM with semi-blind iterative detection/estimation algorithm at the
receiver. (a) CSTSK(2,2,2,8), BPSK, with perfect CSIR and CSIR error s of
—20 dB and —15 dB. (b) CSTSK(2,2,2,8), BPSK, with Semi-blind iterative
detection.

CO-DM for SNRs higher than 10 dB. Thus, CDA-DM offers
a better coding gain than CO-DM without any capacity loss at
medium and high SNRs.

B. With Imperfect CSIR

Fig. 2(a) illustrates the sensitivity of the SER performance
under ML detection to CSIR perturbations, where & is the
variance of the complex-valued circular symmetric Gaussian
noise that models the channel estimation error. It is clear
from Fig. 2(a) that the performance of the Alamouti code, the
proposed and of the existing DMs degrades upon increasing
the channel’s estimation error variance. It is evident from the
figure that the proposed CDA-DM perform significantly better
than the existing CO-DM and the Alamouti code for all the
estimation error variances considered. This is attributed to their
higher coding gain.

Fig. 2(b) shows the SER performance of the Alamouti code,
the CDA-DM against their CO-DM counterparts, with the aid
of the detection/estimation algorithm based receiver proposed
in [21]. It is evident from the plots that the proposed DMs
give a better SER performance than the Alamouti code and
the CO-DM for SNRs higher than 12 dB. In CSTSK(2,2,2,8),
BPSK, the proposed CDA-DMs have shown an SNR improve-
ment of 1 dB at an SER of about 10~2 with respect to the
CO-DMs. It is evident from Fig. 2(b) that the SER performance
of CDA-DM at iteration three coincides with that of the perfect
CSIR case and offers significant SNR gain with respect to
Alamouti code.

V. CONCLUSIONS

A class of STBCs that falls into the STSK framework has
been identified and termed as Decomposable Dispersion Codes.
CDA codes were shown to belong to this class, which resulted in
DMs with beneficial coding gains, which was achieved without
compromising the achievable capacity. The proposed DMs have
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attained a better SER performance due to their higher coding
gain under both perfect and imperfect CSIR conditions, as well
as both with ML and with matched filtering based detectors.
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