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Sparsity Averaging for Compressive Imaging

Rafael E. Carrillo, Member, IEEE, Jason D. McEwen, Member, IEEE, Dimitri Van De Ville, Senior Member, IEEE,
Jean-Philippe Thiran, Senior Member, IEEE, and Yves Wiaux, Member, IEEE

Abstract—We discuss a novel sparsity prior for compressive
imaging in the context of the theory of compressed sensing with
coherent redundant dictionaries, based on the observation that
natural images exhibit strong average sparsity over multiple
coherent frames. We test our prior and the associated algorithm,
based on an analysis reweighted £, formulation, through extensive
numerical simulations on natural images for spread spectrum
and random Gaussian acquisition schemes. Our results show that
average sparsity outperforms state-of-the-art priors that promote
sparsity in a single orthonormal basis or redundant frame, or that
promote gradient sparsity. Code and test data are available at
https://github.com/basp-group/sopt.

Index Terms—Compressed sensing, sparse approximation.

I. INTRODUCTION

OMPRESSED sensing (CS) introduces a signal acquisi-

tion framework that goes beyond the traditional Nyquist
sampling paradigm [1]. Consider a complex-valued signal = €
CV, assumed to be sparse in some orthonormal basis ¥ €
CVXN je.,x = Va fora € CV sparse. Also consider the mea-
surement model y = ®x + n, where y € CM denotes the mea-
surement vector, ® € CM*¥ with M < N is the sensing ma-
trix, andn € C* represents noise. The most common approach
to recover x from ¥ is to solve the following convex problem
[1]: mingecw ||@l[1 subject to ||y — PWallz < ¢, where ¢ is
an upper bound on the £ norm of the noise and || -||; denotes the
£1 norm. The signal is recovered as £ = V¢, where & denotes
the solution to the above problem. Such problems, solving for
the signal representation in a sparsity basis, are known as syn-
thesis-based problems. Standard CS provides results if ¢ obeys
a Restricted Isometry Property (RIP) and W is orthonormal [1].
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However, signals often exhibit better sparsity in a redundant dic-
tionary [2]-[4].

Recent works have begun to address CS with redundant dic-
tionaries, i.e., where W € CV*P with N < D, so thatz = Ve
with @ € CP”. Rauhut er al. [5] find conditions on W such
that ®W obeys the RIP to recover e in a synthesis formulation.
Candes et al. [6] provide a theoretical analysis of the ¢; anal-
ysis-based problem. As opposed to synthesis, the analysis for-
mulation solves for the signal itself:

min [|[WTZ|; subject to |y — ®F||2 < ¢, (1)
FECV

where W1 denotes the adjoint operator of W. The aforemen-
tioned work [6] extends the standard CS theory to coherent
and redundant dictionaries, providing theoretical stability guar-
antees based on a general condition of the sensing matrix @,
coined the Dictionary Restricted Isometry Property (D-RIP).
The D-RIP is a natural extension of the standard RIP. In fact
many random matrices that obey the standard RIP also obey the
D-RIP, like Gaussian or Bernoulli ensembles. Also, the subsam-
pled Fourier matrix multiplied by a random sign matrix satisfies
the D-RIP [7], which provides a fast sensing operator. Interest-
ingly, this approach falls within the spread spectrum framework
proposed in [8]. If ® satisfies the D-RIP and ¥ is a general
frame, Candés et al. prove in [6] that the solution to (1), de-
noted &, satisfies the following error bound:

2

where (Wiz)x denotes the best K -term approximation of Wiz
and Cjy and C'; are numerical constants. Similar properties to
the D-RIP coined €2-RIP are introduced in [9] in the context of
the co-sparsity analysis model.

In [10] some of the authors of this paper proposed a novel
sparsity analysis prior in the context of Fourier imaging in radio
astronomy. Our approach relies on the observation that natural
images are simultaneously sparse in various frames, in partic-
ular wavelet frames, or in their gradient, so that promoting av-
erage signal sparsity over multiple frames should be a powerful
prior. In the present work, the average sparsity prior is put in
the generic context of compressive imaging within the theory
of CS with coherent redundant dictionaries. The associated re-
construction algorithm, based on an analysis reweighted £; for-
mulation, is dubbed Sparsity Averaging Reweighted Analysis
(SARA). We evaluate SARA through extensive numerical sim-
ulations for spread spectrum and Gaussian acquisition schemes.
Our results show that the average sparsity prior outperforms
state-of-the-art priors.

& —zlla < Coe+ CLK V2 ||WTg — (W) ||,

II. SPARSITY AVERAGING REWEIGHTED ANALYSIS

Natural images are often complicated and include several
types of structures admitting sparse representations in different
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frames. For example piecewise smooth structures exhibit gra-
dient sparsity, while extended structures are better encapsulated
in wavelet frames. Therefore, in [10] we observed that pro-
moting average sparsity over multiple bases rather than a single
basis is an extremely powerful prior. Here, we propose using
a dictionary composed of a concatenation of g frames W; with
1 <4 < g. We focus on the particular case of concatenation of
Parseval frames, creating the Parseval frame W € CY¥*P  with
N < D, as:

1
\u:ﬁ[wl,wQ,...,

The analysis-based framework is a suitable approach to promote
average sparsity and thus we propose the following prior, pro-
portional to the average sparsity:

ZH\UI-”?HO

Note that in this setting each frame contains all the signal in-
formation. Such a prior cannot be formulated in a synthesis-
based perspective. Previous works considering multiple frames,
e.g., [2], [3], consider a component separation approach, decom-
posing the signal as £ = >.7_, «;, where each component z; is
sparse in the ¢-th frame. This is a completely different problem,
where each component bears only part of the signal information,
which can be addressed either in an analysis or in a synthesis
framework.

Also note on a theoretical level that a single signal cannot be
arbitrarily sparse simultaneously in a set of incoherent frames
[11]. For example, a signal extremely sparse in the Dirac basis
is completely spread in the Fourier basis and thus (2) does not
provide a good error bound. As discussed by Candés et al. in
[6], what is important is that the columns of the Gram matrix
VTV are reasonably sparse such that Wz is sparse when z ad-
mits a sparse representation e with z = We. This requirement
is nothing else than a coherence condition on W. In our case of
concatenations of frames, this leads to the condition that each
W, is highly coherent with itself and mutually coherent with the
other frames. The component separation approaches in [2], [3]
use incoherent frames for the decomposition, while our average
sparsity prior takes the opposite direction. The concatenation of
the first eight orthonormal Daubechies wavelet bases (Db1-DbS,
q = 8) represents a good and simple candidate for a dictionary
in imaging applications. The first Daubechies wavelet basis,
Dbl, is the Haar wavelet basis, which can be used as an al-
ternative to gradient sparsity (usually imposed by a total varia-
tion (TV) prior [12]) to promote piecewise smooth signals. The
Db2-Db8 bases provide smoother sparse decompositions. All
Daubechies bases are mutually coherent thanks to their com-
pact support and identical sampling positions.

In order to promote average sparsity through the prior (4) we
adopt a reweighted /1 minimization scheme [13]. The algorithm
replaces the £y norm by a weighted #; norm and solves a se-
quence of weighted #; problems with weights essentially the
inverse of the values of the solution of the previous problem:

V. )

viz|, = 4)

min |[WW'Z||; subject to ||y — O]z < e, (5)
zeCVN
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where W € RP*P is a diagonal matrix with positive weights.
Assuming i.i.d. complex Gaussian noise with variance o,,, the
£5 norm term in (5) is identical to a bound on the x? with 2 de-
grees of freedom governing the noise level estimator. Therefore,
we set this bound as €2 = (2M+4v/M)o?2 /2, where o2 /2 is the
variance of both the real and imaginary parts of the noise. This
choice provides a likely bound for ||n||> [10]. To solve (5), we
use the Douglas-Rachford splitting algorithm [14]. The solution
is denoted as A(y, ®, W, €). The weights are updated at each it-
eration, i.e., after solving a complete weighted ¢; problem, by
the function f(v,a) = (v + |a|)~! € (0.1], where a de-
notes the coefficient value estimated at the previous iteration
and v # 0 plays the role of a stabilization parameter, avoiding
undefined weights when the signal value is zero. Note that as
~ — 0 the solution of the weighted £; problem approaches the
solution of the ¢y, problem. We use a homotopy strategy and
solve a sequence of weighted #; problems using a decreasing
sequence {7{¥'}, with ¢ denoting the iteration time variable.
The resulting algorithm, dubbed sparsity averaging reweighted
analysis (SARA), is defined in Algorithm 11. See [10] for more
details.

Algorithm 1 SARA algorithm

Input: y, ¢, ¢, 04, 8, 1 and Nyax.

Output: Reconstructed image Z.

1: Initialize # = 1, W = land p = 1.

2: Compute £ = Ay, &, W, ¢), v = o, (\U"'fv(“)).

3: while p > r/ andt < Npax d

4 Update W f(w N, A“ )5,,;j,for¢,j:1,...,p
with &~ 1) = yiglt-1,

5: Compute a solution £ = A(y, ®, W ¢).

6: Update v = max{8y*~1 o,}.

7: Update p = [ — 27V, /|I$(t .

8 t+—1t+4+1

9: end while

III. EXPERIMENTAL RESULTS

In this section we evaluate the reconstruction performance
of SARA by recovering a 256 x 256 pixel version of the Lena
test image from compressive measurements following the mea-
surement model presented in Section I. We use the suggested
Db1-Db8 concatenation as the dictionary for SARA. In order to
have a fast measurement operator that obeys the D-RIP, we use
for a first experiment the spread spectrum technique described
in [8]. Spread spectrum incorporates a modulating sequence on
top of Fourier sampling, defining the measurement operator as

1A rate parameter 4 € (0, 1) controls the decrease of the sequence ¥(*) =
3~ =1 In practice v{*) should however not reach zero. The noise standard
deviation in the sparsity domain o, = \/ M/Do,,, with o,, the noise stan-
dard deviation in measurement space, is a rough estimate for a baseline above
which significant signal components could be identified. Hence we set v(") =
max{ 3+~ 0,7} sothaty(*) is lower-bounded by o, . As a starting point we
set#(%) as the solution of the £, problemand v(? = o, (W12(®), where o, (-)
takes the empirical standard deviation of a signal. The re-weighting process
stops when the relative variation between successive solutions is smaller than
some bound 7 € (0, 1), or after a maximum number of iterations Nyax. We
fixn =103 and 5 = 101,
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Fig. 1. Reconstruction quality results for Lena and spread spectrum measurements. (a) SNR as a function of the number of bases in the dictionary for decompo-
sition depths L = 1, 4, 8 (A = 0.3V, ISNR = 30 dB). (b) SNR results against the undersampling ratio ISNR = 30 dDB). (c) SNR as a function of ISNR
(M = 0.2N). (d) Results for random random Gaussian measurements. SNR against the undersampling ratio for cropped Lena image (ISNR = 30 dB).

® = MFC, where C € RV*¥ is a diagonal matrix with el-
ements with unit norm and randomized sign, F € CY*V is
the discrete Fourier operator and M € R™* is a binary mask
defining the random selection operator. For a second experiment
we consider Gaussian random measurement matrices.

We compare SARA to analogous analysis algorithms, and
their reweighted versions, changing the sparsity dictionary ¥ in
(1) and (5) respectively. The three different dictionaries are: the
Daubechies 8 wavelet basis, the redundant curvelet frame [4]
and the Db1-Db8 concatenation. The associated algorithms are
respectively denoted BPDbS, Curvelet and BPSA for the non
reweighted case. The reweighted versions are respectively de-
noted RW-BPDbS8, RW-Curvelet and SARA. We also compare
to the TV prior [12], where the TV minimization problem is for-
mulated as a constrained problem like (1), but replacing the 4
norm by the image TV norm. The reweighted version of TV is
denoted as RW-TV. Since the image of interest is positive, we
impose the additional constraint that z € RY for all problems.

We wuse as reconstruction quality metric the stan-
dard signal-to-noise ratio (SNR), defined as SNR =
201logy, (|z|l2/]|2 — Z||2), where z and % denote the orig-
inal and the estimated image respectively. Average values over
30 simulations and associated 1o error bars are reported for
all experiments. The measurements are corrupted by com-
plex Gaussian noise. The associated input SNR is defined as
ISNR = 201logyo(/lygllz/||m]|2), where ¥, identifies the clean
measurement vector.

We start by evaluating SARA for spread spectrum acquisi-
tion. Prior to our main analysis, we study the reconstruction
performance of SARA as a function of the number of wavelet
bases in the dictionary. We test depths . = 1, 4, 8 in
the Daubechies decomposition for all dictionaries, fixing
M = 0.3N and ISNR = 30 dB. We add bases in parametric
order, i.e., one basis means Db1 alone, two bases Dbl and Db2
and so on until we reach the eight bases from Db1-Db8. The
results for Lena are summarized in Fig. 1(a). We can observe
that the best performance is obtained when I. = 4 and the
worst when L = 1. We can also observe that the reconstruction
quality improves as the number of bases increases until it
saturates between 4 to 8 bases. These results corroborate our
choice for 8 bases, and L = 4.

Having validated the dictionary choice, we now proceed to
evaluate the reconstruction quality of SARA as a function of
the undersampling ratio M/N. We fix ISNR = 30 dB and
vary the undersampling ratio from 0.1 to 0.9. The SNR results

comparing SARA against all the other benchmark methods are
shown in Fig. 1(b). The results demonstrate that SARA outper-
forms state-of-the-art methods for all undersamplings. SARA
achieves gains between 0.9 and 1.9 dB with the largest gains
observed for undersampling ratios in the range 0.2-0.5. No-
tably, BPSA achieves better SNR than BPDb8, curvelet and
their reweighted versions for all undersampling ratios. It also
achieves similar SNIR to TV in the range 0.4-0.9.

The following experiment studies the robustness of SARA
against measurement noise in the spread spectrum acquisition
setting. We fix M = 0.2N and vary the ISNR in the range 0
to 40 dB. The results are summarized in Fig. 1(c). As expected
from the bound in (2), the relationship between SNR and ISNR
is linear with slope 1 for low ISNTR until it is high enough and
the reconstruction quality is dominated by the undersampling
effect. Notably, SARA outperforms the benchmark methods for
all ISNR, achieving an SNR. of 20 dB for an ISNR of 0 dB.
Again, BPSA yields a better performance than BPDb8, Curvelet
and their reweighted versions.

Next we present a visual assessment of the reconstruction
quality of SARA compared to the benchmark methods, still in
the spread spectrum acquisition setting. Fig. 2 shows the recon-
structions for M = 0.2N and ISNR = 30 dB for the three best
algorithms in SNR: SARA (28.1 dB), RW-TV (26.3 dB) and
BPDDbS8 (21.4 dB). SARA provides an impressive reduction of
visual artifacts relative to the other methods in this high under-
sampling regime. In particular RW-TV exhibits expected car-
toon-like artifacts. BPDDbS8 does not yield results of comparable
visual quality.

We now study the performance of SARA with Gaussian
random matrices as measurements operators. Due to computa-
tional limitations for the use of a dense sensing matrix, for this
experiment we use a cropped version of Lena, around the head,
of dimension 128 x 128 as test image. We compare SARA
against all the benchmark methods for this sensing modality.
We fix ISNR = 30 dB and vary the undersampling ratio in
the range 0.1 to 0.9. The SNR results are reported in Fig. 1(d).
These results confirm the performance of SARA for compres-
sive imaging with a different sensing matrix, outperforming the
benchmark methods for M > 0.3N.For M = 0.1N SARA is
1 dB below TV and RW-TV and for M = 0.2N it achieves the
same SNR.

As final experiment, we present a magnetic resonance (MR)
imaging illustration. We reconstruct a 224 x 168 positive brain
image from standard variable density Fourier measurements,
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Fig. 2. Reconstruction example for Lena in spread spectrum acquisition set-
ting (M = 0.2N,ISNR = 30 dB). From left to right and top to bottom:
original image, reconstructed images for SARA (28.1 dB), RW-TV (26.3 dB)
and BPDbS (21.4 dB).

- -

Fig. 3. MR illustration: reconstruction of a brain image from Fourier acquisi-
tion (M = 0.05N,ISNR = 30 dB). From left to right: original image, SARA
(18.8 dB) and TV (17.3 dB) reconstructions.

for an adverse undersampling ratio of M = 0.05V, well be-
yond current state of the art in the field. The ISNR is set to 30
dB. In this case, the sparsity dictionary for SARA is augmented
with the Dirac basis as the brain is quite localized in the field of
view. Fig. 3 shows a zoom of the original brain image and re-
constructed images for SARA and TV, which yield the two best
reconstructions in SNR. In addition to an SNR gain of 1.5 dB,
SARA achieves an impressively better reconstruction from the
visual standpoint.

IV. CONCLUSION

In this letter we have discussed the novel SARA regular-
ization method and algorithm for compressive imaging in
the theoretical context of CS with coherent redundant dic-
tionaries. The approach relies on the observation that natural
images exhibit strong average sparsity. We have evaluated
SARA under two different acquisition schemes: spread spec-
trum and random Gaussian measurements. Experimental

IEEE SIGNAL PROCESSING LETTERS, VOL. 20, NO. 6, JUNE 2013

results demonstrate that the sparsity averaging prior em-
bedded in the analysis reweighted ¢; formulation of SARA
outperforms state-of-the-art priors, based on single frame or
gradient sparsity, both in terms of SNR and visual quality.
An MR imaging illustration also corroborates these conclu-
sions for Fourier imaging. Code and test data are available at
https://github.com/basp-group/sopt.

Future work will concentrate on finding a theoretical frame-
work for the average sparsity model. Specialized results are in-
deed needed in the particular case of concatenation of frames
for an estimate of the number of measurements required for ac-
curate image reconstruction. It would be interesting to explore
the connections between average sparsity and the co-sparsity
model, which proposes a general framework for general anal-
ysis operators (see [9] and references therein). Also, it was re-
cently shown in [15] that combinations of convex relaxation
priors do not yield better results than exploiting only one of
those priors, while non-convex approaches can exploit multiple
models. Those results suggest that the re-weighting approach in
SARA to approximate the non-convex £ norm is fundamental
to exploit average sparsity, as observed in the simulation results.
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