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Abstract—This paper considers a cooperative network with
multiple source-destination pairs and one energy harvesting relay.
The outage probability experienced by users in this networkis
characterized by taking the spatial randomness of user locations
into consideration. In addition, the cooperation among users is
modeled as a canonical coalitional game and the grand coalition
is shown to be stable in the addressed scenario. Simulation
results are provided to demonstrate the accuracy of the developed
analytical results.

I. I NTRODUCTION

Simultaneous power and signal transfer has been recog-
nized as a promising energy harvesting technique, and it is
particularly important to various energy constrained wireless
networks without access to natural light or wind sources [1]–
[3]. Wireless power and signal transfer has been studied in
multiple antenna systems in [4], and its extension to the
case with imperfect channel state information (CSI) at the
transmitter has been considered in [5]. This new concept
of energy harvesting is ideal for cooperative communication
networks, in which the relay transmissions can be powered by
the energy harvested from the incoming signals [6].

In this paper, we consider a cooperative network with
multiple source-destination pairs communicating with each
other via an energy harvesting relay. The contribution of
this paper is two-fold.Firstly the spatial randomness of user
locations is taken into consideration when the outage proba-
bility experienced by users is characterized. In the context of
wireless power transfer, this randomness is particularly impor-
tant since it determines the distance between the transceivers
and hence describes the energy attenuation of the transmitted
signals.Secondlythe cooperation among users is modeled as a
canonical coalitional game, and we show that in the high SNR
regime, a grand coalition is always preferred, which means
when forming a larger cooperative group the users cannot do
worse than by acting alone. Simulation results are providedto
demonstrate the accuracy of the developed analytical results.

II. COOPERATIVE ENERGY HARVESTING TRANSMISSIONS

Consider a scenario withN pairs of sources and destinations
communicating with each other via anenergy harvesting
relay. Particularly the locations of2N nodes are distributed
uniformly in a disc, denoted byD, with the relay located at
its origin andD as its radius. Lethi denote the channel gain
between thei-th source and the relay, which we assume to
be complex Gaussian (i.e., we assume Rayleigh fading),di
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denote the corresponding distance, andα denote the path loss
factor. Similarlygi andci are defined for the channels of the
destinations. Prior to transmissions, no CSI, including channel
gains and distances, is available.

The set of all pairs of nodes is denoted byN . Prior to
transmissions, user pairs who are willing to cooperate with
each other form coalitions. LetSk ∈ N denote a coalition
consisting of|Sk| source-destination pairs.S , {S1, · · · ,SK}
is a partition ofN , if N = ∪K

k=1Sk andSi ∩Sj = 0, for any
i 6= j. Denote the set of all possible partitions byB. Define
P ow
i as the transmission power of thei-th source, and̃P ow

i as
the relay transmission power allocated to thei-th destination.
The cooperative transmission strategy is described as follows:

• Phase I: Each source sends its message to the relay, and
the sources of the same coalition cooperate in the sense
that their power will be shared under the total power con-
straint, i.e.

∑

i∈Sk
P ow
i = P total , |Sk|P ow. Note that

the sources communicate with the relay via orthogonal
channels, and there is no direct source-destination link.

• Phase II: For each received transmission, the relay first
tries to decode the message, and then carries out energy
harvesting if there is any power left after decoding. Then
the relay forwards the correctly decoded messages to the
destinations. Let̂P ow

i denote the power that is harvested
from thei-th source message. The user pairs in the same
coalition are cooperating in the sense that their relaying
power will be shared under the total harvested energy
constraint, i.e.

∑

i∈Sk
P̃ ow
i =

∑

i∈Sk
P̂ ow
i .

P̂ ow
i is calculated based on the energy harvested from thei-th

source message, denoted byEi, i.e. P̂ ow
i = Ei

T
2

, whereT is the
duration of one cooperative frame. For each observation, the
signal-to-noise ratio (SNR) threshold for correct decoding is
ǫ ,

(
22R − 1

)
to ensure1

2 log(1 + SNR) > R, whereR de-
notes the targeted data rate. Any power left after decoding will
be used for energy harvesting, i.e.Ei =

Tη
2

(
|hi|

2

1+dα
i

P ow
i − ǫ

)

,
whereη denotes the energy harvesting efficiency.

Therefore, the relationship between̂P ow
i andP ow

i depends
on the channel gain and distance between thei-th source and
the relay, as described in the following:

P̂ ow
i =







η
(

|hi|
2

1+dα
i

P ow
i − ǫ

)

, if |hi|
2

1+dα
i

Pi ≥ ǫ

0, if |hi|
2

1+dα
i

Pi < ǫ
. (1)

Let Pi denote the outage probability experienced by thei-
th user pair, and therefore the achieved data rate between this
pair isR(1− Pi). A natural choice for the coalition value of
Sk is v(Sk) =

∑

i∈Sk
R ·(1−Pi). The questions to be studied
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in this paper are how many coalitions should be formed, and
how a user should choose a coalition to join. Such questions
can be formulated in the following optimization problem:

max
Pi,S∈B

∑

Sk∈S

(
∑

i∈Sk

R · (1− Pi)

)

(2)

s.t.
∑

i∈Sk

P ow
i = |Sk|P ow,

∑

i∈Sk

P̃ ow
i =

∑

i∈Sk

P̂ ow
i .

III. C ANONICAL COALITIONAL GAME

The optimization problem shown in (2) can be simplified
by taking the following steps.

• Since no CSI is known prior to transmissions, all user
pairs are equally important, which means that equal
power allocation is optimal, i.e.P ow

i = P ow.
• Let S̃k denote the subset ofSk containing all the sources

whose information is successfully delivered to the relay.
When no CSI is available at the relay, all users are
equally important, so equal power allocation is optimal,
i.e. P̃ ow

i = η|S̃k|−1
∑

j∈S̃k

(
|hj |

2

1+dα
j

P ow
j − ǫ

)

.

By applying these steps, an equivalent form of (2) can be
expressed as follows:

max
Pi,S∈B

∑

Sk∈S




∑

i∈Sk

R · (1− Pi)



 (3)

s.t. P
ow
i = P

ow
, P̃

ow
i =

η

|S̃k|

∑

j∈S̃k

(
|hj |

2

1 + dαj
P

ow
j − ǫ

)

.

Evaluating the outage probability is the key to finding the
solution of (3), as discussed in the next section. The path loss
factorα is set as2, in order to obtain closed-form expressions.

A. CharacterizingPi

The following theorem provides the high SNR approxima-
tions for the outage probability.
Theorem 1: In the high SNR regime, the outage prob-

ability experienced by thei-th user pair, i ∈ Sk, can be
approximated as follows:

Pi ≈ Fxi

( ǫ

P ow

)

+

|Sk|∑

n=1

n

|Sk|
an

(n− 1)!

(
(n− 1)!a−n (4)

− 2

D2̟

(̟

a

)n+1
2

Kn+1

(
2
√
̟a
)
+

2

D2̟

×
(
(1 +D2)̟

a

)n+1
2

Kn+1

(

2
√

(1 +D2)̟a
)
)

× |Sk|!
(|Sk| − n)!n!

(

Fxi

( ǫ

P ow

))|Sk|−n (

1− Fxi

( ǫ

P ow

))n

,

whereFxi
(z) , 1 − e−z

D2z
+ e−(1+D2)z

D2z
, a = 1

2 (D
2 + 2), ̟ =

nǫ
ηP ow , andKn(·) denotes the modified Bessel function of the
second kind.

Proof: Please refer to the appendix.
As demonstrated by the simulations in the next section, the
analytical results in Theorem 1 are accurate even in a moderate
SNR regime. However, these results are still too involved

to be directly used for the analysis of coalition formation,
which motivates the following corollary with more explicit
expressions.
Corollary 1: When the SNR approaches infinity, i.e.

P ow → ∞, an asymptotic expression forPi, i ∈ Sk, is

Pi →
(

ǫD2

2
+

(
D2 + 2

)2
ǫ

4η

|Sk|
(|Sk| − 1)

)

1

P ow
(5)

if |Sk| ≥ 2. And the outage probability for the users in
singleton sets, i.e.|Sk| = 1, is given by

Pi →
(
ǫD2

2
+

ǫ(D2 + 2)

2ηD2

[

ln

√
aǫ

ηP ow
+ c0 (6)

−(1 +D2)2

(

ln

√

(1 +D2)ǫa

ηP ow
+ c0

)])

1

P ow
.

Proof: Please refer to the appendix.

B. Characterizing the addressed game

Based on the above theorem and corollary, we can show
that a grand coalition is always preferred.
Corollary 2: When the SNR approaches infinity, the opti-

mization problem in(2) becomes a canonical coalitional game
with transferable utility (TU), and a grand coalition is stable.

Proof: The asymptotic result in (5) reveals the superad-
ditivity property of the addressed game, i.e.v(Si) + v(Sj) <
v(Si ∪ Sj), for any |Si| ≥ 2 and |Sj | ≥ 2. The result in (6)
reveals that the outage probability of a user forming a singleton
set decays at a rate oflog SNR

SNR
. Since a faster decaying rate of

1
SNR

can be achieved by any coalition with a size larger than
1, singleton sets are not preferred, and any users in singleton
sets will try to join in other existing coalitions. Therefore a
grand coalition is a stable point of the system.

Let x∗ , {x∗
n = 1

N
v(N ), n ∈ {1, . . . , N}} denote the

player payoff vector. Following Corollaries 1 and 2, the core
of the addressed game can be characterized as follows.
Corollary 3: When the SNR approaches infinity, the core

of the considered canonical coalitional game with TU, denoted
by C, becomes non-empty andx∗ ∈ C.

Proof: The payoff vectorx∗ is group-rational. And it
is also individually rational since the outage probabilityof
a user in a singleton set decays at a slow rate oflogSNR

SNR
. The

proof thatx∗ ∈ C can be shown by contradiction. Suppose
that there is a coalitionS that rejects the proposed payoff
allocation, which means

∑

i∈S x∗
i < v(S). Recall v(S) =

R
∑

i∈S(1− Pi). From Corollary 1, we first observe that the
outage probability depends on only the size of the coalition,
so the value ofS can be simplified tov(S) = R|S|(1−P|S|).
Similarly for the grand set, we havev(N ) = R|N |(1−P|N |),
which meansx∗

i = R(1 − P|N |). The use of Corollary 1
yields P|N | < P|S|, and therefore

∑

i∈S x∗
i > v(S), which

contradicts the initial claim. The proof is completed.

IV. N UMERICAL RESULTS

In this section, simulation results are provided to demon-
strate the accuracy of the developed analytical results. In
Fig. 1, the analytical results developed in Theorem 1 and
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the asymptotic results shown in Corollary 1 are compared
to computer simulations. Recall that the approximation steps,
such as the ones in (11) and (14), assumeD2

P ow → 0. As can be
seen from the figure, for a smallD, the developed analytical
results match exactly with simulations, and for a case with a
largerD there will be a gap which can be reduced by further
increasing the SNR. In Fig. 2, the outage probability with
different size coalitions is shown as a function of SNR. As can
be seen from the figure, a larger coalition is always beneficial
since users experience fewer errors and hence receive higher
payoff. Particularly the case with a grand coalition achieves
the best performance, which confirms Corollary 2.

V. CONCLUSION

In this paper, we have developed the outage probability for
users in a cooperative network with an energy harvesting relay.
In addition, the cooperation among users has been modeled as
a canonical coalitional game and the grand coalition has been
shown to be stable in the addressed scenario.
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Fig. 1. Simulation vs analytical results.R = 0.5 bit per channel use (BPCU).
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Fig. 2. Outage probability for coalitions with different sizes.

APPENDIX

Proof of Theorem 1 :Define xi ,
|hi|

2

1+d2
i

and yi ,
|gi|

2

1+c2
i

.
Note thatxi andyi are independent and identically distributed
(i.i.d.). hi and gi are i.i.d. complex Gaussian variables, and
the density function of the distance can be found by using the
fact that the locations of the nodes are uniformly distributed
in D [7]. For any areaA with a size of∆ and A ∈ D,
the distribution of each pointW is P(W ∈ A) = ∆

πD2 ,
and the corresponding probability density function (pdf) is

pW (w) = 1
πD2 . In particular, it can be shown that the

cumulative distribution function (CDF) ofxi is

Fxi
(z) , P (xi < z) =

∫

D

(

1− e−(1+d2
i )z
)

pW (w)dw, (7)

wheredi is determined by the distance between the pointW

and the origin [8]. By applying polar coordinates, the CDF of
xi can be obtained as in Theorem 1, and its pdf is

fxi
(z) =

(1 + z)e−z − (1 + z + zD2)e−(1+D2)z

D2z2
. (8)

With equal power allocation, the outage probability of the
i-th user pair,i ∈ Sk, is given by

Pi = Fxi

(
ǫ

P ow

)

+

|Sk|∑

n=1

P

(

i ∈ S̃k, yi <
ǫ

P̃ ow
i

, |S̃k| = n

)

︸ ︷︷ ︸

Q1

. (9)

The first probability in (9) isFxi

(
ǫ

P ow

)
, and the second

probability,Q1, can be expanded as follows:

Q1 =

|Sk|∑

n=1

n

|Sk|
P

(

yi <
ǫ

P̃ ow
i

∣
∣
∣|S̃k| = n

)

︸ ︷︷ ︸

Q2,n

P(|S̃k| = n).

Since the source-relay channels are i.i.d.,P(|S̃k| = n) is

P(|S̃k| = n) =
|Sk|!

(
Fxi

(
ǫ

P ow

))|Sk|−n

(|Sk| − n)!n!

(

1− Fxi

( ǫ

P ow

))n

.

On denotingz =
∑

j∈S̃k
xj , Q2,n is given by

Q2,n = P

(

yi <
ǫ

P̃ ow
i

∣
∣
∣|S̃k| = n

)

(10)

=

∫ ∞

n ǫ
Pow

Fxi




ǫ

ηP ow

|S̃k|
z − ǫη



 fz||S̃k|=n(z)dz.

Directly finding the pdf of z conditioned on|S̃k| = n,
fz||S̃k|=n(z), is difficult. To obtain an approximation ofQ2,n,

first defineγ(z, P ow) , ǫ
(

ηP ow

|S̃k|
z − ǫη

)−1

, and observe that

Fxi
(γ(z, P ow)) exhibits the following property:

Fxi
(γ(z, P ow)) ≈ 1−

(
1− γ(z, P ow) + 1

2γ
2(z, P ow)

)

D2γ(z, P ow)

+

(
1− γ(z, P ow)(1 +D2) + 1

2γ
2(z, P ow)(1 +D2)2

)

D2γ(z, P ow)

=
1

2
γ(z, P ow)(D2 + 2) → 0, (11)

for any fixedz and a sufficiently largeP ow. Or in other words,
when the transmission power is large, the probability quickly
decreases to zero, i.e.Fxi

(γ(z, P ow)) → 0, for z > e and e

is small.
This means that for the integral in (10), a good approxima-

tion of fz||S̃k|=n(z), denoted byf̃z||S̃k|=n(z), needs to ensure

f̃z||S̃k|=n(z) = fz||S̃k|=n(z) for z → 0, and a slight difference
between two functions for a largez has an insignificant impact
on the integral sinceFxi

(γ(z, P ow)) → 0 for a largez. Recall
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that z =
∑

j∈S̃k
xj , and the above rationale motivates us to

find an approximation offxj
(z) for z → 0. Particularly when

z → 0, the pdf ofxj can be approximated as

fxj
(z) ≈ 1

D2z2
(1 + z)

(

1− z +
z2

2

)

− 1

D2z2
(1 + z

+zD2)

(

1− (1 +D2)z +
1

2
(1 +D2)2z2

)

=

(
1

2
D2 + 1

)

+ o(z2).

Directly using the approximationfxj
(z) ≈ 1

2D
2+1 means that

the range of the variable is limited as
[
0, 2

D2+2

]
to ensure the

CDF normalized. Instead we use the following approximation:

fxj
(z) ≈

(
1

2
D2 + 1

)

e−(
1
2D

2+1)z, (12)

an exponential distribution with the parameter
(
1
2D

2 + 1
)
.

As can be seen in Section IV, this approximation is tightly
matched with the simulation results even in the moderate SNR
regime.

Conditioned onxj >
ǫ

P ow , the Laplace transform ofxj is

L(fxj |xj>
ǫ

Pow
(t)) =

1

1− Fxj
( ǫ
P ow )

∫ ∞

ǫ
Pow

e−stfxj
(t)dt

≈
(
1

2
D2 + 1

)

e
D2ǫ

2Pow
e−(s+( 1

2D
2+1)) ǫ

Pow

s+
(
1
2D

2 + 1
) .

The Laplace transform for the pdf of the sum is

L(fz||S̃k|=n(z)) ≈
(
1

2
D2 + 1

)n
e−

nǫs
Pow

(
s+

(
1
2D

2 + 1
))n ,

which yields the pdf ofz conditioned on|S̃k| = n as follows:

fz||S̃k|=n(z) ≈
an
(
z − n ǫ

P ow

)n−1
e−a(z−n ǫ

Pow )

(n− 1)!
,

for nǫ
P ow ≤ z ≤ ∞. On substituting it into the probability of

Q2,n we obtain the following:

Q2,n =

∫ ∞

n ǫ
Pow

Fxi

(
nǫ

ηP ow

1

z − n ǫ
P ow

)

fz||S̃k|=n(z)dz

≈ an

(n− 1)!

∫ ∞

0

Fxi

(
nǫ

ηP ow

1

t

)

e−attn−1dt.

After some algebra manipulations, the probabilityQ2,n can be
expressed as

Q2,n ≈ an

(n− 1)!

(
(n− 1)!a−n (13)

− 2

D2̟

(̟

a

)n+1
2

Kn+1

(
2
√
̟a
)
+

2

D2̟

×
(
(1 +D2)̟

a

)n+1
2

Kn+1

(

2
√

(1 +D2)̟a
)
)

.

By combining (9), (10) and (13), the theorem is proved.�

Proof of Corollary 1 :By applying the series representation
of Bessel functions,xnKn(x) can be approximated as [9]

x2K2(x) =
1

2

(
4− x2

)
+

x4

8

(

− ln
x

2
− c0

)

+ o(x6 lnx),

for x → 0, wherec0 = C − 3
4 andC is Euler’s constant. And

xnKn(x) =
1

2

n−1∑

l=0

(−1)l(n− l − 1)!

l!

x2l

22l−n
+ o(x2n lnx),

for n ≥ 3. For n ≥ 3, Q2,n can be approximated as follows:

Q2,n ≈ an

(n− 1)!

(

(n− 1)!a−n − 1

D2̟2n+1an+1

×
n∑

j=0

(−1)j(n− j)!

j!

(2
√
̟a)

2j

22j−n−1
+

1

D2̟2n+1an+1

×
n∑

j=0

(−1)j(n− j)!

j!

(

2
√

(1 +D2)̟a
)2j

22j−n−1




 ≈ a

(
D2 + 2

)

2(n− 1)
̟.

And for n = 2, we can obtain the following:

Q2,2 ≈
̟(D2 + 2)

2D2

((
ln
√
̟a+ c0

)
− (1 +D2)2

(ln
√

(1 +D2)̟a+ c0)
)

.

Note thatQ2,n for n ≥ 3 decays at a rate of 1
P ow andQ2,2

has a much slower decay rate oflogP
ow

P ow .
By applying the above approximations, when|Sk| ≥ 2, the

outage probability experienced by a user inSk is asymptoti-
cally equivalent to the following expression:

Pi = Fxi

( ǫ

P ow

)

+

|Sk|∑

n=1

n

|Sk|
Q2,n · P(|S̃k| = n)

→ ǫD2

2P ow
+

|Sk|∑

n=1

n

|Sk|
a
(
D2 + 2

)

2(n− 1)

(
nǫ

ηP ow

)

× |Sk|!
(|Sk| − n)!n!

( ǫ

2P ow

)|Sk|−n

=
ǫD2

2P ow
+

a
(
D2 + 2

)

2(|Sk| − 1)

|Sk|ǫ
η

1

P ow
, (14)

and the first part of the corollary is proved. The second part
of the corollary can be proved using similar steps. �
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