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On the Chi square and higher-order Chi

distances for approximatingf -divergences

Frank Nielsen,Senior Member, IEEEand Richard Nock,Nonmember

Abstract

We report closed-form formula for calculating the Chi square and higher-order Chi distances

between statistical distributions belonging to the same exponential family with affine natural space,

and instantiate those formula for the Poisson and isotropicGaussian families. We then describe an

analytic formula for thef -divergences based on Taylor expansions and relying on an extended class of

Chi-type distances.

Index Terms

statistical divergences, chi square distance, Kullback-Leibler divergence, Taylor series, exponential

families.

I. INTRODUCTION

A. Statistical divergences:f -divergences

Measuring the similarity ordissimilaritybetween two probability measures is met ubiquitously

in signal processing. Some usual distances are the Pearsonχ2
P and Neymanχ2

N chi square

distances, and the Kullback-Leibler divergence [1] definedrespectively by:

χ2
P (X1 : X2) =

∫
(x2(x)− x1(x))

2

x1(x)
dν(x), (1)

χ2
N(X1 : X2) =

∫
(x1(x)− x2(x))

2

x2(x)
dν(x), (2)

KL(X1 : X2) =

∫
x1(x) log

x1(x)

x2(x)
dν(x), (3)
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whereX1 and X2 are probability measures absolutely continuous with respect to a reference

measureν, andx1 andx2 denote their Radon-Nikodym densities, respectively. Those dissimilarity

measuresM are termeddivergencesto contrast with metric distances since they are oriented

distances (i.e., M(X1 : X2) 6= M(X2 : X1)) that do not satisfy the triangular inequality. In the

1960’s, many of those divergences were unified using the generic framework off -divergences [3],

[2], If , defined for an arbitrary functionalf :

If(X1 : X2) =

∫
x1(x)f

(
x2(x)

x1(x)

)
dν(x) ≥ 0, (4)

wheref is a convex functionf : (0,∞) ⊆ dom(f) 7→ [0,∞] such thatf(1) = 0). Indeed, it

follows from Jensen inequality thatIf(X1 : X2) ≥ f(
∫
x2(x)dν(x)) = f(1) = 0. Furthermore,

wlog., we may considerf ′(1) = 0 and fix the scale of divergence by settingf ′′(1) = 1,

see [3]. Thosef -divergences1 can always be symmetrized by takingSf(X1 : X2) = If(X1 :

X2) + If∗(X1 : X2), with f ∗(u) = uf(1/u), andIf∗(X1 : X2) = If (X2 : X1). See Table I for

a list of commonf -divergences with their corresponding generatorsf . In information theory,

f -divergences are characterized as theunique family of convex separable [3] divergences that

satisfies theinformation monotonicityproperty [4].

Note thatf -divergences may evaluate to infinity (that is,unboundedIf ) when the integral

diverge, even ifx1, x2 > 0 on the supportX . For example, letX = (0, 1) be the unit interval, and

two densities (with respect to Lebesgue measureνL) x1(x) = 1 andx2(x) = ce−1/x with c−1 =
∫ 1

0
e−1/xdx ≃ 0.148 the normalizing constant. Consider the Kullback-Leibler divergence (f -

divergence withf(u) = u logu): KL(X1 : X2) =
∫ 1

0
x1 log

x1(x)
x2(x)

dνL(x) = − log c+
∫ 1

0
1
x
dν(x) =

∞.

B. Stochastic approximations off -divergences

To bypass the integral evaluation ofIf of Eq. 4 (often mathematically intractable), we carry

out a stochastic integration:

Îf(X1 : X2) ∼
1

2n

n∑

i=1

(
f

(
x2(si)

x1(si)

)
+

x1(ti)

x2(ti)
f

(
x2(ti)

x1(ti)

))
, (5)

1Beware that sometimes theχ2
N andχ2

P definitions are inverted in the literature. This may stem from an alternative definition

of f -divergences defined asI ′f (X1 : X2) =
∫

x2(x)f(
x1(x)
x2(x)

)dν(x) = If (X2 : X1).
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Name of thef -divergence FormulaIf (P : Q) Generatorf(u) with f(1) = 0

Total variation (metric) 1
2

∫

|p(x)− q(x)|dν(x) 1
2
|u− 1|

Squared Hellinger
∫

(
√

p(x)−
√

q(x))2dν(x) (
√
u− 1)2

Pearsonχ2
P

∫ (q(x)−p(x))2

p(x)
dν(x) (u− 1)2

Neymanχ2
N

∫

(p(x)−q(x))2

q(x)
dν(x) (1−u)2

u

Pearson-Vajdaχk
P

∫ (q(x)−λp(x))k

pk−1(x)
dν(x) (u− 1)k

Pearson-Vajda|χ|kP
∫

|q(x)−λp(x)|k

pk−1(x)
dν(x) |u− 1|k

Kullback-Leibler
∫

p(x) log p(x)
q(x)

dν(x) − log u

reverse Kullback-Leibler
∫

q(x) log q(x)
p(x)

dν(x) u log u

α-divergence 4
1−α2 (1−

∫

p
1−α

2 (x)q1+α(x)dν(x)) 4
1−α2 (1− u

1+α

2 )

Jensen-Shannon 1
2

∫

(p(x) log 2p(x)
p(x)+q(x)

+ q(x) log 2q(x)
p(x)+q(x)

)dν(x) −(u+ 1) log 1+u
2

+ u log u

TABLE I

SOME COMMON f -DIVERGENCESIf WITH CORRESPONDING GENERATORS: EXCEPT THE TOTAL VARIATION,

f -DIVERGENCES ARE NOT METRIC[5].

with s1, ..., sn and t1, ..., tn IID. sampled fromX1 andX2, respectively. Those approximations,

although converging to the true values whenn → ∞, are time consuming and yield poor results

in practice, specially when the dimension of the observation space,X , is large. We therefore

concentrate on obtaining exact or arbitrarily fine approximation formula forf -divergences by

considering a restricted class of exponential families.

C. Exponential families

Let 〈x, y〉 denote the inner product forx, y ∈ X : The inner product for vector spacesX is

the scalar product〈x, y〉 = x⊤y. An exponential family [7] is a set of probability measures

EF = {Pθ}θ dominated by a measureν having their Radon-Nikodym densitiespθ expressed

canonically as:

pθ(x) = exp(〈t(x), θ〉 − F (θ) + k(x)), (6)

for θ belonging to thenatural parameter space: Θ =
{
θ ∈ R

D
∣∣∫ pθ(x)dν(x) = 1

}
. Since

log
∫
x∈X

pθ(x)dν(x) = log 1 = 0, it follows thatF (θ) = − log
∫
exp(〈t(x), θ〉+k(x))dν(x). For

full regular families [7], it can be proved that functionF is strictly convex and differentiable
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over the open convex setΘ. FunctionF characterizes the family, and bears different names in

the literature (partition function, log-normalizer or cumulant function) and parameterθ (natural

parameter) defines the memberPθ of the family EF . Let D = dim(Θ) denote the dimension

of Θ, the order of the family. The mapk(x) : X → R is an auxiliary function defining

a carrier measureξ with dξ(x) = ek(x)dν(x). In practice, we often consider the Lebesgue

measureνL defined over the Borelσ-algebraE = B(Rd) of R
d for continuous distributions

(e.g., Gaussian), or the counting measureνc defined on the power setσ-algebraE = 2X

for discrete distributions (e.g., Poisson or multinomial families). The termt(x) is a measure

mapping called the sufficient statistic [7]. Table II shows the canonical decomposition for the

Poisson and isotropic Gaussian families. Notice that the Kullback-Leibler divergence between

membersX1 ∼ EF (θ1) andX2 ∼ EF (θ2) of the same exponential family amount to compute

a Bregman divergence on swapped natural parameters [9]:KL(X1 : X2) = BF (θ2 : θ1), where

BF (θ : θ′) = F (θ)− F (θ′)− (θ − θ′)⊤∇F (θ′), where∇F denotes the gradient.

II. χ2 AND HIGHER-ORDERχk DISTANCES

A. A closed-form formula

WhenX1 andX2 belong to the same restricted exponential familyEF , we obtain the following

result:

Lemma 1:The Pearson/Neyman Chi square distance betweenX1 ∼ EF (θ1) andX2 ∼ EF (θ2)

is given by:

χ2
P (X1 : X2) = eF (2θ2−θ1)−(2F (θ2)−F (θ1)) − 1, (7)

χ2
N (X1 : X2) = eF (2θ1−θ2)−(2F (θ1)−F (θ2)) − 1, (8)

provided that2θ2 − θ1 and2θ1 − θ2 belongs to the natural parameter spaceΘ.

This implies that the chi square distances are always bounded. The proof relies on the following

lemma:

Lemma 2:The integralIp,q =
∫
x1(x)

px2(x)
qdν(x) with p + q = 1 for X1 ∼ EF (θ1) and

X2 ∼ EF (θ2), p ∈ R, p+ q = 1 converge and equals to:

Ip,q = eF (pθ1+qθ2)−(pF (θ1)+qF (θ2)) (9)

provided the natural parameter spaceΘ is affine.

September 19, 2013 DRAFT
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Proof: Let us calculate the integralIp,q:

=

∫
exp(p(〈t(x), θ1〉 − F (θ1) + k(x)))

× exp(q(〈t(x), θ2〉 − F (θ2) + k(x)))dν(x),

=

∫
e〈t(x),pθ1+qθ2〉−(pF (θ1)+qF (θ2))+k(x)dν(x),

= eF (pθ1+qθ2)−(pF (θ1)+qF (θ2))

∫
pF (x|pθ1 + qθ2)dν(x).

Whenpθ1 + qθ2 ∈ Θ, we have
∫
pF (x|pθ1 + qθ2)dν(x) = 1, hence the result.

To prove Lemma 1, we rewriteχ2
P (X1 : X2) =

∫
(
x2
2(x)

x1(x)
−2x2(x)+x1(x))dν(x) =

(∫
x1(x)

−1x2(x)
2dν(x)

)
−

1, and apply Lemma 2 forp = −1 and q = 2 (checking thatp + q = 1). The closed-form

formula for the Neyman chi square follows from the fact thatχ2
N(X1 : X2) = χ2

P (X2 : X1).

Thus when the natural parameter spaceΘ is affine, the Pearson/Neyman Chi square distances

and its symmetrizationχ2
P +χ2

N between members of the same exponential family are available

in closed-form. Examples of such families are the Poisson, binomial, multinomial, or isotropic

Gaussian families to name a few. Let us call those families:affine exponential familiesfor short.

The canonical decomposition of usual affine exponential families are reported in Table II. Note

that a formula for theα-divergences between members of the same exponential family were

reported in [9] forα ∈ [0, 1]: In that case,αθ1 + (1 − α)θ2 always belong to the open convex

natural spaceΘ (here,p belongs toR).

B. The Poisson and isotropic Gaussian cases

As reported in Table II, those Poisson and isotropic Gaussian exponential families have affine

natural parameter spacesΘ.

• The Poisson family. ForP1 ∼ Poi(λ1) andP2 ∼ Poi(λ2), we have:

χ2
P (λ1 : λ2) = exp

(
λ2
2

λ1
− 2λ2 + λ1

)
− 1. (10)

To illustrate this formula with a numerical example, considerX1 ∼ Poi(1) andX2 ∼ Poi(2).

Then, it comes thatχ2
P (P1 : P2) = e− 1 ≃ 1.718.

• The isotropic Normal family. ForN1 ∼ NorI(µ1) andN2 ∼ NorI(µ2), we have according

to Table II:χ2
P (µ1 : µ2) = e

1
2
(2µ2−µ1)⊤(2µ2−µ1)−(µ⊤

2 µ2−
1
2
µ⊤
1 µ1)−1. In that case theχ2 distance

September 19, 2013 DRAFT
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Poi(λ) : p(x|λ) = λxe−λ

x!
, λ > 0, x ∈ {0, 1, ...}

NorI(µ) : p(x|µ) = (2π)−
d

2 e
− 1

2
(x−µ)⊤(x−µ)

, µ ∈ R
d
, x ∈ R

d

Family θ Θ F (θ) k(x) t(x) ν

Poisson log λ R eθ − log x! x νc

Iso.Gaussian µ R
d 1

2
θ⊤θ d

2
log 2π − 1

2
x⊤x x νL

TABLE II

EXAMPLES OF EXPONENTIAL FAMILIES WITH AFFINE NATURAL SPACEΘ. νc DENOTES THE COUNTING MEASURE ANDνL

THE LEBESGUE MEASURE.

is symmetric:

χ2
P (µ1 : µ2) = e(µ2−µ1)⊤(µ2−µ1) − 1 = χ2

N (µ1 : µ2) (11)

C. Extensions to higher-order Vajdaχk divergences

The higher-order Pearson-Vajdaχk
P and |χk

P | distances [6] are defined by:

χk
P (X1 : X2) =

∫
(x2(x)− x1(x))

k

x1(x)k−1
dν(x), (12)

|χ|kP (X1 : X2) =

∫
|x2(x)− x1(x)|

k

x1(x)k−1
dν(x), (13)

are f -divergences for the generators(u − 1)k and |u − 1|k (with |χ|kP (X1 : X2) ≥ χk
P (X1 :

X2)). When k = 1, we haveχ1
P (X1 : X2) =

∫
(x1(x) − x2(x))dν(x) = 0 (i.e., divergence is

never discriminative), and|χ1
P |(X1, X2) is twice the total variation distance (the only metric

f -divergence [5]).χ0
P is the unit constant. Observe that theχk

P “distance” may be negative for

oddk (signed distance), but not|χ|kP . We can compute theχk
P term explicitly by performing the

binomial expansion:

Lemma 3:The (signed)χk
P distance between membersX1 ∼ EF (θ1) andX2 ∼ EF (θ2) of the

same affine exponential family is (k ∈ N) always bounded and equal to:

χk
P (X1 : X2) =

k∑

j=0

(−1)k−j

(
k

j

)
eF ((1−j)θ1+jθ2)

e(1−j)F (θ1)+jF (θ2)
. (14)

September 19, 2013 DRAFT
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Proof:

χk
P (X1 : X2) =

∫
(x2(x)− x1(x))

k

x1(x)k−1
dν(x), (15)

=

∫ k∑

j=0

(−1)k−j

(
k

j

)
x1(x)

k−jx2(x)
j

x1(x)k−1
dν(x), (16)

=

k∑

j=0

(−1)k−j

(
k

j

)∫
x1(x)

1−jx2(x)
jdν(x). (17)

Then the proof follows from Lemma 2 that shows thatI1−j,j(X1 : X2) =
∫
x1(x)

1−jx2(x)
jdν(x) =

eF ((1−j)θ1+jθ2)

e(1−j)F (θ1)+jF (θ2)
.

For Poisson/Normal distributions, we get:

χk
P (λ1 : λ2) =

k∑

j=0

(−1)k−j

(
k

j

)
eλ

1−j
1 λj

2−((1−j)λ1+jλ2), (18)

χk
P (µ1 : µ2) =

k∑

j=0

(−1)k−j

(
k

j

)
e

1
2
j(j−1)(µ1−µ2)⊤(µ1−µ2). (19)

Observe that forλ1 = λ2 = λ, we haveχk
P (λ1 : λ2) =

∑k
j=0(−1)k−j

(
k
j

)
eλ−λ = (1− 1)k = 0

when k ∈ N, as expected. Theχk
P value is always bounded. For sanity check, consider the

binomial expansion fork = 2, we have:χ2
P (λ1 : λ2) =

(
2
0

)
eλ1−λ1 −

(
2
1

)
eλ2−λ2 +

(
2
2

)
e

λ22
λ1

−2λ2 =

e
λ22
λ1

−2λ2 − 1, in accordance with Eq. 10. Consider a numerical example: Let λ1 = 0.6 and

λ2 = 0.3, thenχ2
P ∼ 0.16, χ3

P ∼ −0.03, χ4
P ∼ 0.04, χ5

P ∼ −0.02, χ6
P ∼ 0.018, χ7

P ∼ −0.013,

χ8
P ∼ 0.01, χ9

P ∼ −0.0077, χ10
P ∼ 0.006, etc. This numerical example illustrates the alternating

sign of thoseχk-type signed distances.

III. f -DIVERGENCES FROMTAYLOR SERIES

Recall that thef -divergence defined for a generatorf is If(X1 : X2) =
∫
x1(x)f

(
x2(x)
x1(x)

)
dν(x).

Assumingf analytic, we use the Taylor expansion about a pointλ: f(x) = f(λ) + f ′(λ)(x −

λ) + 1
2
f ′′(λ)(x − λ)2 + ... =

∑∞
i=0

1
i!
f (i)(λ)(x − λ)i, the power series expansion off , for

λ ∈ int(dom(f (i)))∀i ≥ 0.

September 19, 2013 DRAFT
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Lemma 4 (extends Theorem 1 of [6]):When bounded, thef -divergenceIf can be expressed

as the power series of higher order Chi-type distances:

If(X1 : X2) =

∫
x1(x)

∞∑

i=0

1

i!
f (i)(λ)

(
x2(x)

x1(x)
− λ

)i

dν(x),

∗
=

∞∑

i=0

1

i!
f (i)(λ) χi

λ,P (X1 : X2), (20)

In the∗ equality, we swapped the integral and sum according to Fubini theorem since we assumed

that If < ∞, andχi
λ,P (X1 : X2) is a generalization of theχi

P defined by:

χi
λ,P (X1 : X2) =

∫
(x2(x)− λx1(x))

i

x1(x)i−1
dν(x). (21)

and χ0
λ,P (X1 : X2) = 1 by convention. Note thatχi

λ,P ≥ f(1) = (1 − λ)k is a f -divergence

for f(u) = (u − λ)k − (1 − λ)k (convex for evenk). Eq. 20 yields a meaningful numerical

approximation scheme by truncating the series to the firsts terms, provided that the Taylor

remainder is bounded.

• Choosingλ = 1 ∈ int(dom(f (i))), we approximate thef -divergence as follows (Theorem 1

of [6]):

|If(X1 : X2)−
s∑

k=0

f (k)(1)

k!
χk
P (X1 : X2)|

≤
1

(s+ 1)!
‖f (s+1)‖∞(M −m)s, (22)

where‖f (s+1)‖∞ = supt∈[m,M ] |f
(s+1)(t)| andm ≤ p

q
≤ M . Notice that by assuming the

“fatness” of p
q
, we ensure thatIf < ∞.

• Choosingλ = 0 (whenever0 ∈ int(dom(f (i)))) and affine exponential families, we get the

f -divergence in a much simpler analytic expression:

If(X1 : X2) =
∞∑

i=0

f (i)(0)

i!
I1−i,i(θ1 : θ2), (23)

I1−i,i(θ1 : θ2) =
eF (iθ2+(1−i)θ1)

eiF (θ2)+(1−i)F (θ1)
. (24)

Lemma 5:The boundedf -divergences between members of the same affine exponentialfam-

ily can be computed as an equivalent power series wheneverf is analytic.
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Corollary 1: A second-order Taylor expansion yieldsIf(X1 : X2) ∼ f(1) + f ′(1)χ1
N(X1 :

X2)+
1
2
f ′′(1)χ2

N(X1 : X2). Sincef(1) = 0 (f can always be renormalized) andχ1
N(X1 : X2) = 0,

it follows that

If(X1 : X2) ∼
f ′′(1)

2
χ2
N(X1 : X2), (25)

and reciprocallyχ2
N(X1 : X2) ∼

2
f ′′(1)

If (X1 : X2) (f ′′(1) > 0 follows from the strict convexity

of the generator). Whenf(u) = u logu, this yields the well-known approximation [1]:

χ2
P (X1 : X2) ∼ 2 KL(X1 : X2). (26)

For affine exponential families, we then plug the closed-form formula of Lemma 1 to get a simple

approximation formula ofIf . For example, consider the Jensen-Shannon divergence (Table I)

with f ′′(u) = 1
u
− 1

u+1
and f ′′(1) = 1

2
. It follows that IJS(X1 : X2) ∼ 1

4
χ2
N(X1 : X2). (For

Poisson distributionsλ1 = 5 andλ2 = 5.1, we get1.15% relative error.

A. Example 1:χ2 revisited

Let us start with a sanity check for theχ2 distance between Poisson distributions. The Pearson

chi square distance is af -divergence forf(t) = t2 − 1 with f ′(t) = 2t and f ′′(t) = 2 and

f (i)(t) = 0 for i > 2. Thus, withf (0)(0) = −1, f (1)(0) = 0, f (2)(0) = 2, andf (i)(0) = 0 for

i > 2. Recall thatI1−i,i(θ1 : θ2) = eF (iθ2+(1−i)θ1)−(iF (θ2)+(1−i)F (θ1) = exp(λi
2λ

1−i
1 −iλ2−(1−i)λ1).

Note that I1−i,i(λ, λ) = e0 = 1 for all i. Thus we get:If(X1 : X2) = −I1,0 + I−1,2 with

I1,0 = eλ1−λ1 = 1 and I−1,2 = e
λ22
λ1

−2λ2+λ1 . Thus, we obtainIf (X1 : X2) = −1 + e
λ22
λ1

−2λ2+λ1 , in

accordance with Eq. 10.

B. Example 2: Kullback-Leibler divergence

By choosingf(u) = − log u, we obtain the Kullback-Leibler divergence (see Table I). We

havef (i)(u) = (−1)i(i − 1)!u−i, and hencef
(i)(1)
i!

= (−1)i

i
, for i ≥ 1 (with f(1) = 0). Since

χ1
1,P = 0, it follows that:

KL(X1 : X2) =
∞∑

j=2

(−1)i

i
χj
P (X1 : X2). (27)

Note that for the case of KL divergence between members of thesame exponential families,

the divergence can be expressed in a simpler closed-form using a Bregman divergence [9] on

the swapped natural parameters. For example, consider Poisson distributions withλ1 = 0.6 and
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λ2 = 0.3, the Kullback-Leibler divergence computed from the equivalent Bregman divergence

yields KL ∼ 0.1158, the stochastic evaluation of Eq. 5 withn = 106 yields K̂L ∼ 0.1156 and

the KL divergence obtained from the truncation of Eq. 27 to the firsts terms yields the following

sequence:0.0809(s = 2), 0.0910(s = 3), 0.1017(s = 4), 0.1135(s = 10), 0.1150(s = 15), etc.

IV. CONCLUDING REMARKS

We investigated the calculation of statisticalf -divergences between members of the same

exponential family with affine natural space. We first reported a generic closed-form formula for

the Pearson/Neymanχ2 and Vajdaχk-type distance, and instantiated that formula for the Poisson

and the isotropic Gaussian affine exponential families. We then considered the Taylor expansion

of the generatorf at any given pointλ to deduce an analytic expression off -divergences using

Pearson-Vajda-type distances. A second-order Taylor approximation yielded a fast estimation of

f -divergences. This framework shall find potential applications in signal processing and when

designing inequality bounds between divergences.

A JavaTM package that illustrates numerically the lemmata is provided at: www.informationgeometry.org/fDiver
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